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Infinite Series

An infinite series is the sum of an infinite sequence of numbers

a1 + a2 + a3 + · · ·+ an + · · · .

Since there are infinitely many terms to add in an infinite series, we cannot
just keep adding to see what comes out. Instead we look at what we get
by summing the first n terms of the sequence and stopping.

The sum of the first n terms

sn = a1 + a2 + a3 + · · ·+ an

is an ordinary finite sum and can be calculated by normal addition. It is
called the nth partial sum.

As n gets larger, we expect the partial sums to get closer and closer to a
limiting value in the same sense that the terms of a sequence approach a
limit.
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Infinite Series

For example, to assign meaning to an expression like

1 +
1

2
+

1

4
+

1

8
+

1

16
+ · · · .

We add terms one at a time from the beginning and look for a pattern in
how these partial sums grow.

P. Sam Johnson Infinite Series (Part-1) 3/224



Infinite Series

Indeed there is a pattern. The partial sums form a sequence whose nth
term is

sn = 2− 1

2n−1·

This sequence of partial sums converges to 2 because lim
n→∞

1

2n
= 0.

We say “the sum of the infinite series 1 + 1
2 + 1

4 + · · ·+ 1
2n−1 + · · · is 2.”

Is the sum of any finite number of terms in this series equal to 2? No. Can
we actually add an infinite number of terms one by one? No. But we can
still define their sum by defining it to be the limit of the sequence of
partial sums as n→∞, in this case 2.

Our knowledge of sequences and limits enables us to break away from the
confines of finite sums.
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Infinite Series

Definition 1 (Infinite Series, nth Term, Partial Sum).

Given a sequence of numbers {an}, an expression of the form

a1 + a2 + a3 + · · ·+ an + · · ·

is an infinite series. The number an is the nth term of the series. The
sequence {sn} defined by

s1 = a1

s2 = a1 + a2

...

sn = a1 + a2 + · · ·+ an =
n∑

k=1

ak

is the sequence of partial sums of the series, the number sn being the nth
partial sum.
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Infinite Series

Definition 2 (Converges, Sum).

If the sequence of partial sums converges to a limit L, we say that the
series converges and that its sum is L.

In this case, we also write

a1 + a2 + · · ·+ an + · · · =
∞∑
n=1

an = L.

If the sequence of partial sums of the series does not converge, we say that
the series diverges.
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Notation

When we begin to study a given series

a1 + a2 + · · ·+ an + · · ·

we might not know whether it converges or diverges.

In either case, it is convenient to use sigma notation to write the series as

∞∑
n=1

an,
∞∑
k=1

ak , or
∑

an.
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Geometric Series

Geometric series are series of the form

a + ar + ar2 + · · ·+ arn−1 + · · · =
∞∑
n=1

arn−1

in which a and r are fixed real numbers and a 6= 0. The series can also be

written as
∞∑
n=0

arn. The ratio r can be positive, as in

1 +
1

2
+

1

4
+ · · ·+

(1

2

)n−1
+ · · · ,

or negative, as in

1− 1

3
+

1

9
− · · ·+

(
− 1

3

)n−1
+ · · · .
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Infinite Series

Case(i) : r = 1

If r = 1, the nth partial sum of the geometric series is

sn = a + a(1) + a(1)2 + · · ·+ a(1)n−1 = na,

and the series diverges because lim
n→∞

sn = ±∞ depending on the sign of a.

Case(ii) : r = −1

If r = −1, the series diverges because the nth partial sums alternate
between a and 0.
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Geometric Series

Case(iii) : |r | 6= 1

If |r | 6= 1, we can determine the convergence or divergence of the series in
the following way.

sn = a + ar + ar2 + · · ·+ arn−1

rsn = ar + ar2 + · · ·+ arn−1 + arn

sn − rsn = a− arn

sn(1− r) = a(1− rn)

sn =
a(1− rn)

1− r
(r 6= 1).

If |r | < 1, then rn → 0 as n→∞ and sn → a/(1− r). If |r | > 1, then
|rn| → ∞ and the series diverges.

Thus the geometric series
∑∞

n=1 ar
n−1 converges if |r | < 1 and

diverges if |r | ≥ 1.
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Infinite Series

We have determined when a geometric series converges or diverges, and to
what value.

The formula
a

1− r

for the sum of a geometric series applies only when the summation index
begins with n = 1 in the expression

∞∑
n=1

= arn−1

(or with the index n = 0 if we write the series as
∞∑
n=0

arn).
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Infinite Series

Example 3 (Index starts with n = 1).

The geometric series with a = 1/9 and r = 1/3 is

1

9
+

1

27
+

1

81
+ · · · =

∞∑
n=1

1

9

(
1

3

)n−1

=
1/9

1− (1/3)
=

1

6
.

Example 4 (Index Starts with n = 0).

The series
∞∑
n=0

(−1)n5

4n
= 5− 5

4
+

5

16
− 5

64
+ · · ·

is a geometric series with a = 5 and r = −1/4. It converges to

a

1− r
=

5

1 + (1/4)
= 4.
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Examples of Geometric Series

Example 5.

1.
∞∑
n=0

1

2n
= 1 +

1

2
+

1

22
+

1

23
+ · · ·+ 1

2n
+ · · ·

−→ Convergent as |r | = |1/2| < 1.

2.
∞∑
n=0

(−1)n

5n
= 1− 1

5
+

1

52
− 1

53
+ · · ·+ (−1)n

5n
+ · · ·

−→ Convergent as |r | = | − 1/5| < 1.

3.
∞∑
n=0

(−1)n5

4n
= 5− 5

4
+

5

42
− 5

43
+ · · ·+ (−1)n5

4n
+ · · ·

−→ Convergent as |r | = | − 1/4| < 1.

4.
∞∑
n=1

(
7

4

)n−1

= 1 +
7

4
+

(
7

4

)2

+

(
7

4

)3

+ · · ·+
(

7

4

)n−1

+ · · ·

−→ Divergent as |r | = |7/4| > 1.
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Infinite Series

Example 6 (A Bouncing Ball).

We drop a ball from “a” meters above a flat surface. Each time the ball
hits the surface after falling a distance h, it rebounds a distance rh, where
r is positive but less than 1. Find the total distance the ball travels up and
down.
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A Bouncing Ball

The total distance is

s = a + 2ar + 2ar2 + 2ar3 + · · · = a +
2ar

1− r
= a

1 + r

1− r
.

If a = 6 m and r = 2/3, for instance, the distance is

s = 6
1 + (2/3)

1− (2/3)
= 6

(
5/3

1/3

)
= 30m.
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Infinite Series

Is 0.99999 · · · approximately 1, or equal to 1?

Example 7 (Repeating Decimals).

Express the repeating decimal

5.232323 · · ·

as the ratio of two integers.

5.232323 · · · = 5 +
23

100
+

23

(100)2
+

23

(100)3
+ · · ·

= 5 +
23

100

(
1

0.99

)
=

518

99
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Telescoping Series

Definition 8.

A series of the form
∞∑
n=1

(an − an+1) is called a telescoping series.

Unfortunately, formulas like the one for the sum of a convergent geometric
series are rare and we usually have to settle for an estimate of a series’
sum. The next example, however, is another case in which we can find the
sum exactly.

Example 9 (A Non-geometric Series but Telescoping Series).

Find the sum of the series

∞∑
n=1

1

n(n + 1)
.
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Solution

We look for a pattern in the sequence of partial sums that might lead to a
formula for sk . The key observation is the partial fraction decomposition

1

n(n + 1)
=

1

n
− 1

n + 1
,

so
k∑

n=1

1

n(n + 1)
=

k∑
n=1

(
1

n
− 1

n + 1

)
and

sk =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·+

(
1

k
− 1

k + 1

)
.
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Solution (contd...)

Removing parentheses and canceling adjacent terms of opposite sign
collapses the sum to

sk = 1− 1

k + 1
.

We now see that sk → 1 as k →∞.

The series converges, and its sum is 1:

∞∑
n=1

1

n(n + 1)
= 1.
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Examples of Telescoping Series

Example 10.
1.

∞∑
n=1

1

n(n + 1)
=

1

1.2
+

1

2.3
+

1

3.4
+ · · ·+

1

n(n + 1)
+ · · ·

2.
∞∑
n=1

5

(n + 1)(n + 2)
=

5

2.3
+

5

3.4
+

5

4.5
+ · · ·+

5

(n + 1)(n + 2)
+ · · ·

3.
∞∑
n=1

4

(4n − 3)(4n + 1)
=

4

1.5
+

4

5.9
+

4

9.13
+ · · ·+

4

(4n − 3)(4n + 1)
+ · · ·

4.
∞∑
n=1

[
−1

ln (n + 1)
+

1

ln(n + 2)

]
=

(
−

1

ln 2
+

1

ln 3

)
+

(
−

1

ln 3
+

1

ln 4

)
+ · · ·
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Telescoping-type Series

Example 11.

The sequence of partial sums of the series

∞∑
n=1

( 1

n + 2
− 1

n + 4

)
is

sn =
1

3
+

1

4
− 1

n + 3
− 1

n + 4
.

Since sn → 7
12 as n→∞, the sum of the series

∑∞
n=1

(
1

n+2 −
1

n+4

)
is 7

12 .
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Necessary condition for convergence

Theorem 12.

If
∞∑
n=1

an converges, then an → 0.

Proof :

Let S represent the series’ sum and sn = a1 + a2 + · · ·+ an the nth partial
sum.

When n is large, both sn and sn−1 are close to S , so their difference, an, is
close to zero. More formally,

an = sn − sn−1 → S − S = 0.
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The nth-Term Test for Divergence

The above theorem leads to a test for detecting the kind of divergence,
called the nth term test.

Theorem 13 (The nth-Term Test for Divergence).

If lim
n→∞

an fails to exist or is different from zero, then
∞∑
n=1

an diverges.

Theorem (12) does not say that
∑∞

n=1 an converges if an → 0.

It is possible for a series to diverge when an → 0.
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Divergent Series

One reason that a series may fail to converge is that its terms do not
become small.

Example 14 (Partial Sums Outgrow Any Number).

(a) The series ∞∑
n=1

n2 = 1 + 4 + 9 + · · ·+ n2 + · · ·

diverges because the partial sums grow beyond every number L. After
n = 1, the partial sum sn = 1 + 4 + 9 + · · ·+ n2 is greater than n2.

(b) The series ∞∑
n=1

n + 1

n
=

2

1
+

3

2
+

4

3
+ · · ·+ n + 1

n
+ · · ·

diverges because the partial sums eventually outgrow every
preassigned number. Each term is greater than 1, so the sum of n
terms is greater than n.
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Infinite Series

Example 15 (Applying the nth-Term Test).

(a)
∞∑
n=1

n2 diverges because n2 →∞.

(b)
∞∑
n=1

n + 1

n
diverges because n+1

n → 1.

(c)
∞∑
n=1

(−1)n+1 diverges becaues lim
n→∞

(−1)n+1 does not exist.

(d)
∞∑
n=1

−n
2n + 5

diverges because lim
n→∞

−n
2n + 5

= −1

2
6= 0.
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Infinite Series

We have seen that if
∑

an converges, then an → 0.

The converse need not be true. The following example illustrates this.
an → 0 but the series diverges.

Example 16.

The series

1 +
1

2
+

1

2
+

1

4
+

1

4
+

1

4
+

1

4
+ · · ·+ 1

2n
+

1

2n
+ · · ·+ 1

2n
+ · · ·

diverges because the terms are grouped into clusters that add to 1, so the
partial sums increase without bound.

However, the terms of the series form a sequence that converges to 0. We

shall see that the harmonic series lim
n→∞

1

n
also behaves in this manner.
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Combining Series

Whenever we have two convergent series, we can add them term by
term, subtract them term by term, or multiply them by constants to make
new convergent series.

Theorem 17.

If
∑

an = A and
∑

bn = B are convergent series, then

1. Sum Rule :
∑

(an + bn) =
∑

an +
∑

bn = A + B

2. Difference Rule :
∑

(an − bn) =
∑

an −
∑

bn = A− B

3. Constant Multiple Rule :
∑

kan = k
∑

an = kA (any number k)

The three rules for series form the analogous rules for sequences.
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Proof (Sum Rule)

To prove the Sum Rule for series, let

An = a1 + a2 + · · ·+ an, Bn = b1 + b2 + · · ·+ bn.

Then the partial sums of
∑

(an + bn) are

sn = (a1 + a2) + (a2 + b2) + · · ·+ (an + bn)

= (a1 + · · ·+ an) + (b1 + · · ·+ bn)

= An + Bn.

Since An → A and Bn → B, we have sn → A + B by the Sum Rule for
sequences.
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Infinite Series

The proof of the Difference Rule is similar.

To prove the Constant Multiple Rule for series, observe that the partial
sums of

∑
kan form the sequence

sn = ka1 + ka2 + · · ·+ kan = k(a1 + a2 + · · ·+ an) = kAn,

which converges to kA by the Constant Multiple Rule for sequences.
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Infinite Series

As corollaries of the Theorem (17), we have the following results. We omit
proof.

Theorem 18.

(a) Every nonzero constant multiple of a divergent series diverges.

(b) If
∑

an converges and
∑

bn diverges, then
∑

(an + bn) and∑
(an − bn) both diverge.

The following example is given to show that
∑

(an + bn) can converge
when

∑
an and

∑
bn both diverge.

Example 19.∑
an = 1 + 1 + 1 + · · · and

∑
bn = (−1) + (−1) + (−1) + · · · diverge,

whereas
∑

(an + bn) = 0 + 0 + 0 + · · · converges to 0.
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Properties of convergent series (contd...)

Converse of the sum and difference rules do not hold. That is,∑
(an + bn) is convergent ;

∑
an and

∑
bn are convergent.

In other words,
∑

(an + bn) may be convergent, but either one or
both of

∑
an and

∑
bn may be divergent.

Example : Both
∑

an =
∑

(1) and
∑

bn =
∑

(−1) are divergent,
whereas

∑
(an + bn) = 0 is convergent.∑

(an − bn) is convergent ;
∑

an and
∑

bn are convergent.

Is the converse of constant multiple rule true ?
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Properties of Divergent Series

Theorem 20.

If
∑

an is divergent, then for any constant k 6= 0,
∑

(kan) is also divergent.
That is, every non-zero constant multiple of a divergent series is divergent.

Proof.

Let
∑

an diverge to +∞ and {sn} be the sequence of partial sums of∑
(an). Then lim

n→∞
sn = +∞.

If {tn} is the sequence of partial sums of
∑

(kan), then

lim
n→∞

tn = k( lim
n→∞

sn) =

{
+∞ if k > 0

−∞ if k < 0

Hence,
∑

(kan) is divergent, where k 6= 0.

Similarly, if
∑

an diverges to −∞, then
∑

(kan) is divergent, for
k 6= 0.
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Properties of Divergent Series (contd...)

If
∑

an converges and
∑

bn diverges, then both
∑

(an + bn) and∑
(an − bn) diverge.

If both
∑

an and
∑

bn diverge, then
∑

(an + bn) and
∑

(an − bn)
can by of any nature.

For example, if
∑

an =
∑

(1) and
∑

bn =
∑

(−1), then∑
(an + bn) =

∑
(0), which is convergent.

Whereas, if
∑

an =
∑

(n) and
∑

bn =
∑

(n2), then∑
(an + bn) =

∑
(n + n2), which is divergent.
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Convergence of Series of Non-negative Terms

If
∑

an is an infinite series of non-negative terms, that is, an ≥ 0, for all n,
then clearly, sn+1 ≥ sn, for all n and hence {sn} is always monotonically
increasing.

Therefore, we have the following by Monotone Convergence Theorem
(MCT).

Corollary 21 (To MCT/Non-increasing Sequence Theorem).

If
∑

an is a series of non-negative terms, then
∑

an is convergent ⇔ {sn}
is bounded above.

A series of non-negative terms either converges or diverges to +∞.
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Harmonic Series

Example 1 (Harmonic Series).

Discuss the converges of the harmonic series

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

n
+ · · ·

Solution : Let
∑

an =
∑ 1

n
and {sn} be its sequence of partial sums.

Clearly, an ≥ 0, for all n. So, it is enough to verify whether {sn} is
bounded above. We have

sn = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+ · · ·+ 1

n
.
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Harmonic Series

Note that

1 +
1

2
>

1

2
1

3
+

1

4
>

1

4
+

1

4
=

1

2
1

5
+

1

6
+

1

7
+

1

8
>

1

8
+

1

8
+

1

8
+

1

8
=

1

2

...
...

...

1

2n + 1
+

1

2n + 2
+ · · ·+

1

2n+1
>

1

2n+1
+

1

2n+1
+ · · ·+

1

2n+1

=
2n

2n+1 =
1

2

⇒ 1 +
1

2
+

1

3
+ · · ·+

1

2n+1
>

n + 1

2

(1)

In general, if n = 2k , then sn >
k

2
.

⇒ {sn} is not bounded above, hence
∑

an is not convergent.
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Infinite Series

Example 22.

(a) The sum of
∞∑
n=1

3n−1 − 1

6n−1
is 4

5 :

∞∑
n=1

3n−1 − 1

6n−1
=

∞∑
n=1

(
1

2n−1
− 1

6n−1

)

=
∞∑
n=1

1

2n−1
−
∞∑
n=1

1

6n−1
= 2− 6

5
=

4

5

(b) The sum of
∞∑
n=1

4

2n
is 8 :

∞∑
n=1

4

2n
= 4

∞∑
n=0

1

2n
= 8
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Adding or Deleting Terms

We can add a finite number of terms to a series or delete a finite number
of terms without altering the series’ convergence or divergence, although
in the case of convergence this will usually change the sum.

If
∞∑
n=1

an converges, then
∞∑
n=k

an converges for any k > 1 and

∞∑
n=1

an = a1 + a2 + · · ·+ ak−1 +
∞∑
n=k

an.

Conversely, if
∞∑
n=k

an converges for any k > 1, then
∞∑
n=1

an converges.
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Reindexing

As long as we preserve the order of its terms, we can reindex any series
without altering its convergence.

To raise the starting value of the index h units, replace the n in the
formula for an by n − h.

∞∑
n=1

an =
∞∑

n=1+h

an−h = a1 + a2 + a3 + · · · .
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Reindexing

To lower the starting value of the index h units, replace the n in the
formula for an by n + h :

∞∑
n=1

an =
∞∑

n=1−h
an+h = a1 + a2 + a3 + · · · .

It works like a horizontal shift. We saw this in starting a geometric series
with the index n = 0 instead of the index n = 1, but we can use any other
starting index value as well.

We usually give preference to indexings that lead to simple expressions.
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Reindexing

Example 23 (Reindexing a Geometric Series).

We can write the geometric series

∞∑
n=1

1

2n−1
= 1 +

1

2
+

1

4
+ · · ·

as
∞∑
n=1

1

2n

∞∑
n=5

1

2n−5
, or even

∞∑
n=−4

1

2n+4
.

The partial sums remain the same no matter what indexing we choose to
use.
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Finding nth Partial Sums

Exercise 24.

Find a formula for the nth partial sum of each series and use it to find the
series’ sum if the series converges.

1. 2 + 2
3 + 2

9 + 2
27 + · · ·+ 2

3n−1 + · · ·
2. 9

100 + 9
1002 + 9

1003 + · · ·+ 9
100n + · · ·

3. 1− 2 + 4− 8 + · · ·+ (−1)n−12n−1 + · · ·
4. 1

2.3 + 1
3.4 + 1

4.5 + · · ·+ 1
(n+1)(n+2) + · · ·
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Solution

1. 3

2. 1
11

3. diverges

4. 1
2
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Series with Geometric Terms

Write out the first few terms of each series to show how the series starts.
Then find the sum of the series.

Exercise 25.

1.
∞∑
n=0

(−1)n

4n

2.
∞∑
n=0

(
5

2n
− 1

3n

)

3.
∞∑
n=0

(
1

2n
+

(−1)n

5n

)
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Solution

1. 4
5

2. 17
2

3. 17
6
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Exercise

Exercise 26.

Use the nth-Term Test for divergence to show that the series is divergent,
or state that the test is inconclusive.

1.
∞∑
n=1

n(n + 1)

(n + 2)(n + 3)

2.
∞∑
n=1

cos
(1

n

)
3.

∞∑
n=1

en

en + π

4.
∞∑
n=1

ln
1

n

5.
∞∑
n=1

cos nπ
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Solution

1. diverges

2. diverges

3. diverges

4. diverges

5. diverges
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Telescoping Series

Exercise 27.

Find a formula for the nth partial sum of the series and use it to determine
if the series converges or diverges. If a series converges, find its sum.

1.
∞∑
n=1

( 3

n2
− 3

(n + 1)2

)
2.

∞∑
n=1

(
ln
√
n + 1− ln

√
n
)

3.
∞∑
n=1

(
tan n − tan(n − 1)

)
4.

∞∑
n=1

(
cos−1

( 1

n + 1

)
− cos−1

( 1

n + 2

))
5.

∞∑
n=1

(√
n + 4−

√
n + 3

)
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Solution

1. converges to 3

2. diverges

3. diverges

4. converges to −π
6

5. diverges
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Telescoping Series

Exercise 28.

1.
∞∑
n=1

6

(2n − 1)(2n + 1)

2.
∞∑
n=1

(
1√
n
− 1√

n + 1

)

3.
∞∑
n=1

(
1

ln(n + 2)
− 1

ln(n + 1)

)

4.
∞∑
n=1

(
tan−1(n)− tan−1(n + 1)

)
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Solution

1. converges to 3

2. converges to 1

3. converges to − 1
ln 2

4. converges to −π
4
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Convergence or Divergence

Exercise 29.

Which of the following converge, and which diverge? Give reasons for your
answers. If a series converges, find its sum.

1.
∞∑
n=1

(−1)n+1 3

2n

2.
∞∑
n=0

cos nπ

5n

3.
∞∑
n=0

1

xn
, |x | > 1

4.
∞∑
n=0

n!

1000n

5.
∞∑
n=1

nn

n!

6.
∞∑
n=1

ln

(
n

2n + 1

)

7.
∞∑
n=0

enπ

πne
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Solution

1. converges to 1

2. converges to 5
6

3. converges to x
x−1

4. diverges

5. diverges

6. diverges

7. divergent geometric series
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Geometric Series

Exercise 30.

In each of the following geometric series, write out the first few terms of
the series to find a and r , and find the sum of series. Then express the
inequality |r | < 1 in terms of x and find the values of x for which the
inequality holds and the series converges.

1.
∞∑
n=0

(−1)nx2n

2.
∞∑
n=0

(−1)n

2

(
1

3 + sin x

)n
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Solution

1. converges to 1
1+x2 for |x | < 1

2. converges to 3+sin x
8+2 sin x for all x
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Geometric Series

Exercise 31.

Find the values of x for which the given geometric series converges.
Also, find the sum of the series (as a function of x) for those values of x.

1.
∞∑
n=0

2nxn

2.
∞∑
n=0

(
−1

2

)n

(x − 3)n

3.
∞∑
n=0

sinn x

4.
∞∑
n=0

(ln x)n
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Solution

1. converges to 1
1−2x for |x | < 1

2

2. converges to 2
x−1 for 1 < x < 5

3. converges to 1
1−sin x for x 6= (2k + 1)π2 , k is an integer

4. converges to 1
1−ln x for e−1 < x < e
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Repeating Decimals

Exercise 32.

Express each of the following numbers as the ratio of two integers.

1. 0.23 = 0.232323 · · ·
2. 0.7 = 0.7777 · · ·
3. 3.142857 = 3.142857142857 · · ·
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Solution

1. 23
99

2. 7
9

3. 116,402
37,037
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Theory and Examples

Exercise 33.

1. Write the series
∞∑
n=1

1

(n + 1)(n + 2)
as a sum beginning with

(a) n = −2 (b) n = 0 (c) n = 5

2. Make up an infinite series of nonzero terms whose sum is

(a) 1 (b) −3 (c) 0

3. Can you make an infinite series of nonzero terms that converges to
any number you want? Explain.

4. Show by example that
∑

(an/bn) may diverge even though
∑

an and∑
bn converge and no bn equals 0.
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Solution

1. (a)
∞∑

n=−2

1

(n + 4)(n + 5)

(b)
∞∑
n=0

1

(n + 2)(n + 3)

(c)
∞∑
n=5

1

(n − 3)(n − 2)

2. (a) one example is 1
2 + 1

4 + 1
8 + 1

16 + · · · =
( 1

2 )
1−( 1

2 )
= 1

(b) one example is − 3
2 −

3
4 −

3
8 −

3
16 − · · · =

(− 3
2 )

1−( 1
2 )

= −3

(c) one example is 1− 1
2 −

1
4 −

1
8 −

1
16 − · · · = 1− ( 1

2 )
1−( 1

2 )
= 0.

3. The series
∞∑
n=0

k
(

1
2

)n+1
is a geometric series whose sum is

( k
2 )

1−( 1
2 )

= k

where k can be any positive or negative number.

4. Let an = bn =
(

1
2

)n
. Then

∞∑
n=1

an =
∞∑
n=1

bn =
∞∑
n=1

(
1
2

)n
= 1, while

∞∑
n=1

(
an
bn

)
=
∞∑
n=1

(1) diverges.
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Theory and Examples

Exercise 34.

1. Find convergent geometric series A =
∑

an and B =
∑

bn that
illustrate the fact that

∑
anbn may converge without being equal to

AB.

2. Show by example that
∑

(an/bn) may converge to something other
than A/B even when A =

∑
an,B =

∑
bn 6= 0, and no bn equals 0.

3. If
∑

an converges and an > 0 for all n, can anything be said about∑
(1/an)? Give reasons for your answer.
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Solution

1. Let an = bn =
(

1
2

)n
. Then

∞∑
n=1

an =
∞∑
n=1

bn =
∞∑
n=1

(
1
2

)n
= 1, while

∞∑
n=1

(anbn) =
∞∑
n=1

(
1
4

)n
= 1

3 6= AB.

2. Let an =
(

1
4

)n
and bn =

(
1
2

)n
. Then A =

∞∑
n=1

an = 1
3 , B =

∞∑
n=1

bn = 1

and
∞∑
n=1

(
an
bn

)
=
∞∑
n=1

(
1
2

)n
= 1 6= A

B .

3. Yes:
∑(

1
an

)
diverges. The reasoning:

∑
an converges

⇒ an → 0⇒ 1
an
→∞⇒

∑(
1
an

)
diverges by the nth-Term Test.
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Theory and Examples

Exercise 35.

1. What happens if you add a finite number of terms to a divergent
series or delete a finite number of terms from a divergent series? Give
reasons for your answer.

2. If
∑

an converges and
∑

bn diverges, can anything be said about
their term-by-term sum

∑
(an + bn)? Give reasons for your answer.

3. Make up a geometric series
∑

arn−1 that converges to the number 5

(a) a = 2 (b) a = 13/2

4. Find the value of b for which 1 + eb + e2b + e3b + · · · = 9.

5. For what values of r does the infinite series

1 + 2r + r2 + 2r3 + r4 + 2r5 + r6 + · · ·

converge? Find the sum of the series when it converges.
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Solution

1. Since the sum of a finite number of terms is finite, adding or subtracting a finite number
of terms from a series that diverges does not change the divergence of the series.

2. Let An = a1 + a2 + · · ·+ an and lim
n→∞

An = A. Assume
∑

(an + bn) converges to S . Let

Sn = (a1 +b1)+(a2 +b2)+· · ·+(an+bn)⇒ Sn = (a1 +a2 +· · ·+an)+(b1 +b2 +· · ·+bn)⇒
b1 + b2 + · · ·+ bn = Sn − An ⇒ lim

n→∞
(b1 + b2 + · · ·+ bn) = S − A⇒

∑
bn converges.

This contradicts the assumption that
∑

bn diverges; therefore,
∑

(an + bn) diverges.

3. (a) 2
1−r = 5⇒ 2

5 = 1− r ⇒ r = 3
5 ;

2 + 2
(

3
5

)
+ 2

(
3
5

)2
+ · · · = 5.

(b)
( 13

2 )
1−r = 5⇒ 13

10 = 1− r ⇒ r = − 3
10 ;

13
2 −

13
2

(
3

10

)
+ 13

2

(
3

10

)2 − 13
2

(
3

10

)3
+ · · · = 5.

4. 1 + eb + e2b + · · · = 1
1−eb

= 9⇒ 1
9

= 1− eb ⇒ eb = 8
9
⇒ b = ln

(
8
9

)
5. sn = 1 + 2r + r2 + 2r3 + r4 + 2r5 + · · ·+ r2n + 2r2n+1, n = 0, 1, · · ·
⇒ sn =

(
1 + r2 + r4 + · · ·+ r2n

)
+ (2r + 2r3 + 2r5 + · · ·+ 2r2n+1)

⇒ lim
n→∞

sn = 1
1−r2 + 2r

1−r2 = 1+2r
1−r2 , if |r2| < 1 or |r | < 1
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Theory and Examples

Exercise 36.

Show that the error (L− sn) obtained by replacing a convergent geometric
series with one of its partial sums sn is arn/(1− r).
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Solution

L− sn = a
1−r −

a(1−rn)
1−r = arn

1−r
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Theory and Examples

Exercise 37.

The accompanying figure shows the first five a sequence of squares. The
outermost square has an area of 4m2. Each of the other squares is
obtained by joining the midpoints of the sides of the squares before it.
Find the sum of the areas of all the squares.
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Solution

Area = 22 +
(√

2
)2

+ (1)2 +

(
1√
2

)2

+ · · ·

= 4 + 2 + 1 +
1

2
+ · · ·

=
4

1− 1
2

= 8m2
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Theory and Examples

Exercise 38 (Helga von Koch’s snowflake curve).

Helga von Koch’s snow-flake is a curve of infinite length that encloses a
region of finite area. To see why this is so, suppose the curve is generated
by starting with an equilateral triangle whose sides have length 1.

(a) Find the length Ln of the nth curve Cn and show that
limn→∞ Ln =∞.

(b) Find the area An of the region enclosed by Cn and calculate
limn→∞ An.
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Solution

1. L1 = 3, L2 = 3
(

4
3

)
,

L3 = 3
(

4
3

)2
, . . . , Ln = 3

(
4
3

)n−1 ⇒ lim
n→∞

Ln = lim
n→∞

3
(

4
3

)n−1
=∞

2. Using the fact that the area of an equilateral triangle of side length s

is
√

3
4 s2, we see that A1 =

√
3

4 , A2 = A1 + 3
(√

3
4

) (
1
3

)2
=
√

3
4 +

√
3

12 ,

A3 = A2 + 3(4)
(√

3
4

) (
1
32

)2
=
√

3
4 +

√
3

12 +
√

3
27 ,

A4 = A3 + 3(4)2
(√

3
4

) (
1
33

)2
, A5 = A4 + 3(4)3

(√
3

4

) (
1
34

)2
, . . .,

An =
√

3
4 +

n∑
k=2

3(4)k−2
(√

3
4

) (
1
32

)k−1
=

√
3

4 +
n∑

k=2

3
√

3(4)k−3
(

1
9

)k−1
=
√

3
4 + 3

√
3

(
n∑

k=2

4k−3

9k−1

)
.

lim
n→∞

An = lim
n→∞

(√
3

4 + 3
√

3

(
n∑

k=2

4k−3

9k−1

))
=
√

3
4 + 3

√
3

(
1

36

1− 4
9

)
=

√
3

4 + 3
√

3
(

1
20

)
=
√

3
4 (1 + 3

5 ) =
√

3
4

(
8
5

)
= 8

5A1.
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Theory and Examples

Exercise 39.
1. A ball is dropped from a height of 4m. Each time it strikes the pavement after falling

from a height of h meters it rebounds to a height of 0.75h meters. Find the total distance
the ball travels up and down.
Find the total number of seconds the ball is travelling. (Hint: The formula s = 4.9t2 gives

t =
√

s/4.9.)

2. The accompanying figure shows the first three rows and part of the fourth row of a
sequence of rows of semicircles. There are 2n semicircles in the 4th row, each of radius
1/2”. Find the sum of the areas of all the semicircles.
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Theory and Examples

Exercise 40.

The accompanying figure provides an informal proof that

∞∑
n=1

(1/n2)

is less than 2. Explain what is going on.
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Theory and Examples

Exercise 41.

The largest circle in the accompanying figure has radius 1. Consider the
sequence of circles of maximum area inscribed in semicircles of diminishing
size. What is the sum of the areas of all of the circles?
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Theory and Examples

Exercise 42 (Drug dosage).

A patient takes a 300mg tablet for the control of high blood pressure every
morning at the same time. The concentration of the drug in the patient’s
system decays exponentially at a constant hourly rate of k = 0.12.

1. How many milligrams of the drug are in the patient’s system just
before the second tablet is taken? Just before the third tablet is
taken?

2. In the long run, after taking the medication for at least six months,
what quantity of drug is in the patient’s body just before taking the
next regularly scheduled morning tablet?
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Theory and Examples

Exercise 43 (The Cantor set).

To construct this set, we begin with the closed interval [0, 1]. From that interval, remove the
middle open interval (1/3, 2/3), leaving the two closed intervals [0, 1/3] and [2/3, 1]. At the
second step we remove the open middle third interval from each of those remaining. From
[0, 1/3] we remove the open interval (1/9, 2/9), and from [2/3, 1] we remove (7/9, 8/9), leaving
behind the four closed intervals [0, 1/9], [2/9, 1/3], [2/3, 7/9], and [8/9, 1]. At the next step, we
remove the middle open third interval from each closed interval left behind, so (1/27, 2/27) is
removed from [0, 1/9], leaving the closed intervals [0, 1/27] and [2/27, 1/9]; (7/27, 8/27) is
removed from [2/9, 1/3], leaving behind [2/9, 7/27] and [8/27, 1/3], and so forth. We continue
this process repeatedly without stopping, at each step removing the open third interval from
every closed interval remaining behind from the preceding step. The numbers remaining in the
interval [0, 1], after all open middle third intervals have been removed, are the points in the
Cantor set (named after Georg Cantor, 1845-1918). The set has some interesting properties.

1. The Cantor set contains infinitely many numbers in [0, 1]. List 12 numbers that belong to
the Cantor set.

2. Show, by summing an appropriate geometric series, that the total length of all the open
middle third intervals that have been removed from [0, 1] is equal to 1.
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Integral Test
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Integral Test

Given a series
∑

an, we have two questions:

1. Does the series converge?

2. If it converges, what is its sum?

We answer these questions by making a connection to the convergence of
the improper integral ∫ ∞

1
f (x) dx .

However, as a practical matter the second question is also important, and
we will discuss it now.
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Integral Test

We study series that do not have negative terms. The reason for this
restriction is that the partial sums of these series form nondecreasing
sequences, and nondecreasing sequences that are bounded from above
always converge. To show that a series of nonnegative terms converges,
we need only show that its partial sums are bounded from above.

It may at first seem to be a drawback that this approach establishes the
fact of convergence without producing the sum of the series in question.
Surely it would be better to compute sums of series directly from formulas
for their partial sums. But in most cases such formulas are not available,
and in their absence we have to turn instead to the two step procedure of
first establishing convergence and then approximating the sum.
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Nondecreasing Partial Sums

Suppose that
∞∑
n=1

an

is an infinite series with

an ≥ 0 for all n.

Then each partial sum is greater than or equal to its predecessor because
sn+1 = sn + an :

s1 ≤ s2 ≤ s3 ≤ · · · ≤ sn ≤ sn+1 ≤ · · · .

Since the partial sums form a nondecreasing sequence, the Nondecreasing
Sequence Theorem tells us the series will converge if and only if the partial
sums are bounded from above.
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Corollary of Nondecreasing Sequence Theorem

Corollary 44.

A series
∞∑
n=1

an of nonnegative terms converges if and only if its partial

sums are bounded from above.

Example 45 (The Harmonic Series).

The series
∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+ · · ·+ 1

n
+ · · ·

is called the harmonic series.

The harmonic series is divergent, but this does not follow from the
nth-Term Test.
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Harmonic Series

The nth term 1
n does go to zero, but the series still diverges.

The reason it diverges is because there is no upper bound for its partial
sums.

To see why, group the terms of the series in the following way:

1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+

(
1

9
+

1

10
+ · · ·+

1

16

)
+ · · ·
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Harmonic Series

The sum of the first two terms 3/2.

The sum of the next two terms is 1/3 + 1/4, which is greater than
1/4 + 1/4 = 1/2.

The sum of the next four terms is 1/5 + 1/6 + 1/7 + 1/8, which is
greater than 1/8 + 1/8 + 1/8 + 1/8 = 1/2.

The sum of the next eight terms is
1/9 + 1/10 + 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16, which is greater
than 8/16 = 1/2.

The sum of the next 16 terms is greater than 16/32 = 1/2, and so on.
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Harmonic Series

In general, the sum of 2n terms ending with 1/2n+1 is greater than
2n/2n+1 = 1/2.

The sequence of partial sums is not bounded from above: If n = 2k , the
partial sum sn is greater than k/2.

Therefore the harmonic series
∞∑
n=1

1

n
diverges.

Note that the sequence
{

1
n

}
converges.

Don’t get confused with the terms “sequence” and “series”.
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Integral Test

We introduce the Integral Test with a series that is related to the
harmonic series, but whose nth term is 1/n2 instead of 1/n.

Example 46 (Does the following series converge?).
∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+ · · ·+ 1

n2
+ · · · .

Solution :

We determine the convergence of
∞∑
n=1

1

n2
by comparing it with

∫ ∞
1

1

x2
dx .
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Integral Test

To carry out the comparison, we think of the terms of the series as values
of the function f (x) = 1/x2 and interpret these values as the areas of
rectangles under the curve y = 1/x2.

The sum of the areas of the
rectangles under the graph of
f (x) = 1/x2 is less than the area
under the graph.
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Integral Test

From the figure, we have

sn =
1

12
+

1

22
+

1

32
+ · · ·+ 1

n2

= f (1) + f (2) + f (3) + · · ·+ f (n)

< f (1) +

∫ n

1

1

x2
dx

< 1 +

∫ ∞
1

1

x2
dx

< 1 + 1 = 2.

Thus the partial sums of
∞∑
n=1

1

n2
are bounded from above (by 2) and the

series converges. The sum of the series is known to be π2/6 ≈ 1.64493.
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Integral Test

Theorem 47 (Integral Test).

Let {an} be a sequence of positive terms. Suppose that an = f (n), where
f is a continuous, positive, decreasing function of x for all x ≥ N, where
N is a positive integer. Then the series

∞∑
n=N

an

and the integral ∫ ∞
N

f (x) dx

both converge or both diverge.
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Proof of Integral Test

We establish the test for the case N = 1. The proof for general N is
similar. We start with the assumption that f is a decreasing function with
f (n) = an for every n.

This leads us to observe that the
rectangles in the figure, which have
areas a1, a2, . . . , an, collectively
enclose more area than that under
the curve y = f (x) from x = 1 to
x = n + 1.

That is, ∫ n+1

1
f (x) dx ≤ a1 + a2 + · · ·+ an.
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Proof of the Integral Test (contd . . .)

In the figure, the rectangles have
been faced to the left instead of to
the right.

If we do not consider the first rectangle, of area a1, we see that

a2 + a3 + · · ·+ an ≤
∫ n

1
f (x) dx .

If we include a1, we have

a1 + a2 + · · ·+ an ≤ a1 +

∫ n

1
f (x) dx .
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Proof of the Integral Test (contd . . .)

Combining these results gives∫ n+1

1
f (x) dx ≤ a1 + a2 + · · ·+ an ≤ a1 +

∫ n

1
f (x) dx .

These inequalities hold for each n, and continue to hold as n→∞.

If
∫∞

1 f (x) dx is finite, the right-hand inequality shows that
∑

an is finite.

If
∫∞

1 f (x) dx is infinite, the left-hand inequality shows that
∑

an is
infinite.

Hence the series and the integral are both finite or both infinite.
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The p-series

Example 48 (The p-series).

Show that the p-series

∞∑
n=1

1

np
=

1

1p
+

1

2p
+

1

3p
+ · · ·+ 1

np
+ · · ·

(p is a real constant) converges if p > 1, and diverges if p ≤ 1.
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The p-series : Solution :

If p > 1, then f (x) = 1/xp is a positive decreasing function of x . Since∫ ∞
1

1

xp
dx =

∫ ∞
1

x−p dx = lim
b→∞

[
x−p+1

−p + 1

]b
1

=
1

1− p
lim
b→∞

(
1

bp−1
− 1

)
=

1

1− p
(0− 1) =

1

p − 1
,

the series converges by the Integral Test.
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The p-series : Solution (contd...)

We emphasize that the sum of the p-series is not 1/(p − 1). The series
converges, but we do not know the value it converges to.

If p < 1, then 1− p > 0 and∫ ∞
1

1

xp
dx =

1

1− p
lim
b→∞

(b1−p − 1) =∞.

The series diverges by the Integral Test.

If p = 1, we have the (divergent) harmonic series

1 +
1

2
+

1

3
+ · · ·+ 1

n
+ · · · .

We have convergence for p > 1 but divergence for every other value of p.

P. Sam Johnson Infinite Series (Part-1) 94/224



The p-Series Test

The p-series with p = 1 is the harmonic series.

The p-Series Test shows that the harmonic series is just barely divergent;
if we increase p to 1.000000001, for instance, the series converges!

The slowness with which the partial sums of the harmonic series
approaches infinity is impressive.

For instance, it takes about 178, 482, 301 terms of the harmonic series to
move the partial sums beyond 20. It would take your calculator several
weeks to compute a sum with this many terms.
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A Convergent Series

Example 49.

The series
∞∑
n=1

1

n2 + 1

converges by the Integral Test. The function f (x) = 1/(x2 + 1) is positive,
continuous, and decreasing for x ≥ 1, and∫ ∞

1

1

x2 + 1
dx = lim

b→∞
[arctan x ]b1 = lim

b→∞
[arctan b − arctan 1]

=
π

2
− π

4
=
π

4
.

Again we emphasize that π/4 is not the sum of the series. The series
converges, but we do not know the value of its sum.
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Determining Convergence or Divergence

Example 50.
Determine the convergence or divergence of the series.

(a)
∞∑
n=1

ne−n2
(b)

∞∑
n=1

1
2ln n

Solution :

(a) We apply the Integral Test and find that

∫ ∞
1

x

ex
2
dx =

1

2

∫ ∞
1

du

eu
u = x2

, du = 2xdx

= lim
b→∞

[
−

1

2
e−u

]b
1

= lim
b→∞

(
−

1

2eb
+

1

2e

)
=

1

2e
.

Since the integral converges, the series also converges.

(b) Again applying the Integral Test,

∫ ∞
1

dx

2ln x
=

∫ ∞
0

eudu

2u
u = ln x, x = eu , dx

= eudu =

∫ ∞
0

(
e

2

)u
du = lim

b→∞

1

ln
(

e
2

) (( e

2

)b
− 1

)
=∞. (e/2) > 1

The improper integral diverges, so the series diverges also.
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Error Estimation

For some convergent series, such as the geometric series or the telescoping
series, we can actually find the total sum of the series. That is, we can
find the limiting value S of the sequence of partial sums.

For most convergent series, however, we cannot easily find the total sum.
Nevertheless, we can estimate the sum by adding the first n terms to get
sn, but we need to know how far off sn is from the total sum S .

An approximation to a function or to a number is more useful when it is
accompanied by a bound on the size of the worst possible error that could
occur. With such an error bound we can try to make an estimate or
approximation that is close enough for the problem at hand.

Without a bound on the error size, we are just guessing and hoping that
we are close to the actual answer. We now show a way to bound the error
size using integrals.
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Error Estimation

Suppose that a series
∑

an with positive terms is shown to be convergent
by the Integral Test, and we want to estimate the size of the remainder
Rn measuring the difference between the total sum S of the series and its
nth partial sum sn. That is, we wish to estimate

Rn = S − sn = an+1 + an+2 + an+3 + · · · .
To get a lower bound for the remainder, we compare the sum of the areas
of the rectangles with the area under the curve y = f (x) for x ≥ n. We
see that

Rn = an+1 + an+2 + an+3 + · · · ≥
∫ ∞
n+1

f (x)dx .
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Error Estimation

Similarly, from the above figure, we find an upper bound with

Rn = an+1 + an+2 + an+3 + · · · ≤
∫ ∞
n

f (x)dx .

These comparisons prove the following result, giving bounds on the size of
the remainder. The remainder when using n terms is

(a) larger than the integral f over [n + 1,∞).

(b) smaller than the integral of f over [n,∞).
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Bounds for the Remainder in the Integral Test

Suppose {ak} is a sequence of positive terms with ak = f (k), where f is a
continuous positive decreasing function of x for all x ≥ n, and that

∑
an

converges to S . Then the remainder Rn = S − sn satisfies the inequalities∫ ∞
n+1

f (x)dx ≤ Rn ≤
∫ ∞
n

f (x)dx . (2)

If we add the partial sum sn to each side of the inequalities in (4), we get

sn +

∫ ∞
n+1

f (x)dx ≤ S ≤ sn +

∫ ∞
n

f (x)dx (3)

since sn + Rn = S . The inequalities in (3) are useful for estimating the
error in approximating the sum of a series known to converge by the
Integral Test.
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Bounds for the Remainder in the Integral Test

The error can be no larger than the length of the interval containing S ,
with endpoints given by (3).

Example 51.

Estimate the sum of the series
∑

(1/n2) using the inequalities in (3) and
n = 10.

Solution : We have that∫ ∞
n

1

x2
dx = lim

b→∞

[
−1

x

]b
n

= lim
b→∞

(
−1

b
+

1

n

)
=

1

n
.

Using this result with the inequalities in (3), we get

s10 +
1

11
≤ S ≤ s10 +

1

10
.
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Solution (contd...)

Taking s10 = 1 + (1/4) + (1/9) + (1/16) + · · ·+ (1/100) ≈ 1.54977, these
last inequalities give

1.64068 ≤ S ≤ 1.64977.

If we approximate the sum S by the midpoint of this interval, we find that

∞∑
n=1

1

n2
≈ 1.6452.

The error in this approximation is then less than half the length of the
interval, so the error is less than 0.005.

Using a trigonometric Fourier series (studied in advanced calculus), it can
be shown that S is equal to π2/6 ≈ 1.64493.
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Exercise

Exercise 52 (Applying the Integral Test).

Use the Integral Test to determine if the following series converge or
diverge. Be sure to check that the conditions of the Integral Test are
satisfied.

1.
∞∑
n=1

1

n0.2

2.
∞∑
n=1

e−2n

3.
∞∑
n=2

ln(n2)

n

4.
∞∑
n=1

n2

en/3

5.
∞∑
n=2

n − 4

n2 − 2n + 1
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Solution

1. f (x) = 1
x0.2 is positive, continuous and decreasing for x ≥ 1. By the

Integral Test, the given series diverges.

2. The function is decreasing for x ≥ 1. By the Integral Test, the given
series converges.

3. The function is decreasing for x ≥ 3. By the Integral Test, the given
series diverges.

4. The function is decreasing for x ≥ 7. By the Integral Test, the given
series converges.

5. The function is decreasing for x ≥ 8. By the Integral Test, the given
series diverges.
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Exercise

Exercise 53 (Determining Convergence or Divergence).

Which of the series converge, and which diverge? Give reasons for your
answers. (When you check an answer, remember that there may be more
than one way to determine the series’ convergence or divergence.)

1.
∞∑
n=1

1

10n

2.
∞∑
n=1

n

n + 1

3.
∞∑
n=1

−2

n
√
n

4.
∞∑
n=2

ln n√
n

5.
∞∑
n=1

2n

n + 1

6.
∞∑
n=1

1√
n(
√
n + 1)
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Solution

1. converges

2. diverges

3. converges

4. diverges

5. diverges

6. diverges
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Exercise

Exercise 54 (Determining Convergence or Divergence).

Which of the series converge, and which diverge? Give reasons for your
answers. (When you check an answer, remember that there may be more
than one way to determine the series’ convergence or divergence.)

1.
∞∑
n=1

1

(ln 3)n

2.
∞∑
n=3

(1/n)

(ln n)
√

ln2 n − 1

3.
∞∑
n=1

n tan
1

n

4.
∞∑
n=1

8 tan−1 n

1 + n2

5.
∞∑
n=1

n

n2 + 1
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Solution

1. diverges
2. converges
3. diverges

4. converges

5. converges
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Theory and Examples

Exercise 55.

1. For what values of a, if any, does the series
∞∑
n=1

(
a

n + 2
− 1

n + 4

)
converge?

2. Are there any values of x for which
∞∑
n=1

(1/(nx)) converges? Give

reasons for your answer.
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Solution

1.
∫∞

1

(
a

x+2 −
1

x+4

)
dx = lim

b→∞
[a ln |x + 2| − ln |x + 4|]b1 =

lim
b→∞

ln (b+2)a

b+4 − ln
(

3a

5

)
;

But lim
b→∞

(b+2)a

b+4 = a lim
b→∞

(b + 2)a−1 =

{
∞, a > 1

1, a = 1

Hence the series converges if a = 1 (but do not conclude that it
converges to ln( 5

3 ) ) and diverges to ∞ if a > 1. If a < 1, the terms
of the series eventually become negative and the Integral Test does
not apply. From that point on, however, the series behaves like a
negative multiple of the harmonic series, and so it diverges.

2. No, because
∞∑
n=1

1
nx = 1

x

∞∑
n=1

1
n and

∞∑
n=1

1
n diverges.
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Theory and Examples

Exercise 56.

Is it true that if
∞∑
n=1

an is a divergent series of positive numbers then there

is also a divergent series
∞∑
n=1

bn

of positive numbers with bn < an for every n?

(a) Is there a ”smallest” divergent series of positive numbers? Give
reasons for your answers.

(b) Is there a ”largest” convergent series of positive numbers? Explain.
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Solution

(a) No. If
∞∑
n=1

an is a divergent series of positive numbers, then(
1
2

) ∞∑
n=1

an =
∞∑
n=1

(
an
2

)
also diverges and an

2 < an. There is no smallest

divergent series of positive numbers: for any divergent series
∞∑
n=1

an of

positive numbers
∞∑
n=1

(
an
2

)
has smaller terms and still diverges.

(b) No, if
∞∑
n=1

an is a convergent series of positive numbers, then

2
∞∑
n=1

an =
∞∑
n=1

2an also converges, and 2an ≥ an. There is no largest

convergent series of positive numbers.
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Theory and Examples

Exercise 57 (The Cauchy Condensation Test).

Let {an} be a non-increasing sequence (an ≥ an+1 for all n) of positive
terms that converges to 0. Then prove that

∑
an converges if and only if∑

2na2n converges.
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Proof of Cauchy Condensation Test

Let An =
∑n

k=1 ak and Bn =
∑n

k=1 2ka2k where {ak} is a non-increasing
sequence of positive terms converging to 0.

Note that {An} and {Bn} are non-decreasing sequences of positive terms.
Now

Bn = 2a2 + 4a4 + 8a8 + · · ·+ 2na2n

= 2a2 + 2a4 + 2a4 + (2a8 + 2a8 + 2a8 + 2a8) + · · ·+ (2na2n + · · ·+ 2n−1 (terms))

≤ 2a1 + 2a2 + (2a3 + 2a4) + (2a5 + 2a6 + 2a7 + 2a8) + · · ·
· · ·+ 2a2n−1 + 2a2n−1+1 + · · ·+ 2na2n

= 2A2n

≤ 2
∞∑
k=1

ak

Therefore if
∑

ak converges, then {Bn} is bounded above.

Thus
∑

2ka2k converges.
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Proof of Cauchy Condensation Test (contd...)

Conversely,

An = a1 + (a2 + a3) + (a4 + · · ·+ a7) + · · ·+ an

≤ a1 + (a2 + a3) + (a4 + · · ·+ a7) + · · ·+ a2n+1

= a1 + (a2 + a3) + (a4 + · · ·+ a7) + · · ·+ (a2n + · · ·+ a2n+1)

< a1 + 2a2 + 4a4 + · · ·+ 2na2n

= a1 + Bn ≤ a1 +
∞∑
k=1

2ka2k .

Therefore, if
∑∞

k=1 2ka2k converges, then {An} is bounded above and
hence converges.
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The Cauchy condensation test

Example 58.∑
(1/n) diverges because

∑
2n · (1/2n) =

∑
1 diverges.

Exercise 59.

1. Use the Cauchy condensation test to show that

(a)
∞∑
n=2

1

n ln n
diverges;

(b)
∞∑
n=1

1

np
converges if p > 1 and diverges if p ≤ 1.
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Solution

(a) a(2n) = 1
2n ln(2n) = 1

2n·n(ln 2) ⇒
∞∑
n=2

2na2n =
∞∑
n=2

2n 1
2n·n(ln 2) = 1

ln 2

∞∑
n=2

1
n ,

which diverges ⇒
∞∑
n=2

1
n ln n diverges.

(b) a(2n) = 1
2np ⇒

∞∑
n=1

2na2n =
∞∑
n=1

2n · 1
2np =

∞∑
n=1

1
(2n)p−1 =

∞∑
n=1

(
1

2p−1

)n
, a

geometric series that converges if 1
2p−1 < 1 or p > 1, but diverges if

p ≤ 1.

P. Sam Johnson Infinite Series (Part-1) 118/224



Logarithmic p-series

Exercise 60.

1. Show that ∫ ∞
2

dx

x(ln x)p

(p is a positive constant) converges if and only if p > 1.

2. What implications does the fact in the above exercise have for the
convergence of the series

∞∑
n=2

1

n(ln n)p
?

Give reasons for your answer.

P. Sam Johnson Infinite Series (Part-1) 119/224



Solution

1.
∫∞

2
dx

x(ln x)p ;

[
u = ln x

du = dx
x

]
→
∫∞

ln 2 u
−pdu = lim

b→∞

[
u−p+1

−p+1

]b
ln 2

=

lim
b→∞

(
1

1−p

)
[b−p+1 − (ln 2)−p+1] =

{
1

p−1 (ln 2)−p+1, p > 1

∞, p < 1
⇒ the

improper integral converges if p > 1 and diverges if p < 1.
For p = 1:

∫∞
2

dx
x ln x = lim

b→∞
[ln(ln x)]b2 = lim

b→∞
[ln(ln b)− ln(ln 2)] =∞,

so the improper integral diverges if p = 1.

2. Since the series and the integral converge or diverge together,
∞∑
n=2

1
n(ln n)p converges if and only if p > 1.
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Exercise

Theorem 61 (Logarithmic p-series Test).

Let p be a positive constant. The series

∞∑
n=2

1

n(ln n)p

converges if and only if p > 1.

Exercise 62 (Logarithmic p-series).

Use Logarithmic p-series test determine which of the following series
converge and which diverge. Support your answer in each case.

(a)
∞∑
n=2

1

n(ln n)1.01
(b)

∞∑
n=2

1

n ln(n3)
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Solution

(a) p = 1.01⇒ the series converges

(b)
∞∑
n=2

1
n(ln n3)

= 1
3

∞∑
n=2

1
n(ln n) ; p = 1⇒ the series diverges
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Euler’s Constant

The figures suggest that as n increases there is little change in the
difference between the sum

1 +
1

2
+ · · ·+ 1

n

and the integral

ln n =

∫ n

1

1

x
dx .
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Euler’s Constant

By taking f (x) = 1/x in the proof of ”The Integral Test”, show that

ln(n + 1) ≤ 1 +
1

2
+ · · ·+ 1

n
≤ 1 + ln n

or

0 < ln(n + 1)− ln n ≤ 1 +
1

2
+ · · ·+ 1

n
− ln n ≤ 1.

Thus, the sequence

an = 1 +
1

2
+ · · ·+ 1

n
− ln n

is bounded from below and from above.
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Exercise

Exercise 63 (Euler’s Constant).

Show that
1

n + 1
<

∫ n+1

n

1

x
dx = ln(n + 1)− ln n.

and use this result to show that the sequence {an} defined by
an = 1 + 1

2 + · · ·+ 1
n − ln n is decreasing. Since a decreasing sequence that

is bounded from below converges, the numbers an converge:

1 +
1

2
+ · · ·+ 1

n
− ln n→ γ.

The number γ, whose value is 0.5772 · · · , is called Euler’s constant. In
contrast to other special numbers like π and e, no other expression with a
simple law of formulation has ever been found for γ.
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Solution

From the above graph with f (x) = 1
x ,

1
n+1 <

∫ n+1
n

1
x dx = ln(n + 1)− ln n⇒ 0 > 1

n+1 − [ln(n + 1)− ln n] =(
1 + 1

2 + 1
3 + · · ·+ 1

n+1 − ln(n + 1)
)
−
(
1 + 1

2 + 1
3 + · · ·+ 1

n − ln n
)
. If

we define an = 1 + 1
2 = 1

3 + 1
n − ln n, then

0 > an+1 − an ⇒ an+1 < an ⇒ {an} is a decreasing sequence of
nonnegative terms.
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Exercise

Exercise 64.

Use the integral test to show that

∞∑
n=0

e−n
2

converges.
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Solution

e−x
2 ≤ e−x for x ≥ 1, and∫∞

1 e−xdx = lim
b→∞

[−e−x ]b1 = lim
b→∞

(−e−b + e−1) = e−1 ⇒
∫∞

1 e−x
2
dx

converges by the Comparison Test for improper integrals

⇒
∞∑
n=0

e−n
2

= 1 +
∞∑
n=1

e−n
2

converges by the Integral Test.
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∑∞
n=1(1/

√
n + 1) diverges.

Exercise 65.

1. Use the accompanying graph to show that the partial sum s50 =
∑50

n=1(1/
√
n + 1) satisfies∫ 51

1

1
√
x + 1

dx < s50 <

∫ 50

0

1
√
x + 1

dx .

Conclude that 11.5 < s50 < 12.3.

2. What should n be in order that the partial sum

sn =
n∑

i=1

(1/
√
i + 1) satisfy sn > 1000?
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∑∞
n=1(1/n4) converges.

Exercise 66.

1. Use the accompanying graph to find an upper bound for the error if
s30 =

∑30
n=1(1/n4) is used to estimate the value of

∑∞
n=1(1/n4).

2. Find n so that the partial sum sn =
∑n

i=1(1/i4) estimates the value
of
∑∞

n=1(1/n4) with an error of at most 0.000001.
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Exercises

Exercise 67.

1. Estimate the value of
∑∞

n=1(1/n3) to within 0.01 of its exact value.

2. Estimate the value of
∑∞

n=2

(
1/(n2 + 4)

)
to within 0.1 of its exact

value.

3. How many terms of the convergent series
∑∞

n=1(1/n1.1) should be
used to estimate its value with error at most 0.00001?

4. How many terms of the convergent series
∑∞

n=4 1/(n(ln n)3) should
be used to estimate its value with error at most 0.01?
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Exercises

Exercise 68.

1. (a) For the series
∑

(1/n3), use the inequalities in Equation (3) with
n = 10 to find an interval containing the sum S.

(b) Use the midpoint of the interval found in part (a) to approximate the
sum of the series. What is the maximum error for your approximation?

2. Repeat the above exercise using the series
∑

(1/n4).

3. Area Consider the sequence {1/n}∞n=1. On each subinterval
(1/(n + 1), 1/n) within the interval [0, 1], erect the rectangle with
area an having height 1/n and width equal to the length of the
subinterval. Find the total area

∑
an of all the rectangles.

4. Area Repeat the above exercise, using trapezoids instead of
rectangles. That is, on the subinterval (1/(n + 1), 1/n), let an denote
the area of the trapezoid having heights y = 1/(n + 1) at
x = 1/(n + 1) and y = 1/n at x = 1/n.
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Comparison Tests
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Direct Comparison Test

We shall now discuss how to determine the convergence of series by
comparing their terms to those of a series whose convergence is known.

We shall also discuss a comparison test (called, limit comparison test)
that is particularly useful for series in which nth term of the series is a
rational function on n.
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Direct Comparison Test

Theorem 69 (Direct Comparison Test).

Let
∑

an and
∑

bn be two series with 0 ≤ an ≤ bn for all n ≥ N.

1. If
∑

bn converges, then
∑

an also converges.

2. If
∑

an diverges, then
∑

bn also diverges.
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Proof of Part 1

Consider, for n ≥ N,

An = a1 + a2 + · · ·+ aN−1 + aN + aN+1 + · · ·+ an

≤ (a1 + a2 + · · ·+ aN−1) + (bN + bN+1 + · · ·+ bn)

=

N−1∑
n=1

an +
∞∑
n=N

bn ≤
N−1∑
n=1

an +
∞∑
n=1

bn

=

N−1∑
n=1

an + B, (since
∞∑
n=1

bn = B)

= M (say), which is finite. (since both

N−1∑
n=1

an and B are finite.)

⇒ An ≤ M, ∀ n ≥ N.

As {An} is non-decreasing, A1 ≤ A2 ≤ · · · ≤ AN ≤ AN+1 ≤ · · · ≤ M.

⇒ An ≤ M, ∀n

⇒ {An} is bounded, hence
∑

an is convergent.
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Proof of Part 2

Suppose on the contrary that
∑

bn is convergent and let
∑

bn = B.
Consider, for n ≥ N,

An = a1 + a2 + · · ·+ aN−1 + aN + aN+1 + · · ·+ an

≤ (a1 + a2 + · · ·+ aN−1) + (bN + bN+1 + · · ·+ bn)

=

N−1∑
n=1

an +
∞∑
n=N

bn ≤
N−1∑
n=1

an +
∞∑
n=1

bn

=

N−1∑
n=1

an + B, (since
∞∑
n=1

bn = B)

= M (say), which is finite. (since both

N−1∑
n=1

an and B are finite.)

⇒ An ≤ M, ∀ n ≥ N.

As {An} is non-decreasing, A1 ≤ A2 ≤ · · · ≤ AN ≤ AN+1 ≤ · · · ≤ M.

⇒ An ≤ M, ∀n.

⇒ {An} is bounded, hence
∑

an is convergent, which is a contradiction.
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Applying the Comparison Test

Example 70.

The series
∞∑
n=1

5

5n − 1

diverges because its nth term

5

5n − 1
=

1

n − 1
5

>
1

n

is greater than the nth term of the divergent harmonic series.
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Applying the Comparison Test

Example 71.

The series
∞∑
n=0

1

n!
= 1 +

1

1!
+

1

2!
+

1

3!
+ · · ·

converges because its terms are all positive and less than or equal to the
corresponding terms of

1 +
∞∑
n=0

1

2n
= 1 + 1 +

1

2
+

1

22
+ · · · = 3.

The fact that 3 is an upper bound for the partial sums of
∞∑
n=0

1

n!
does not

mean that the series converges to 3. We shall see that the series converges
to e.
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Applying the Comparison Test

Example 72.

The series

5 +
2

3
+

1

7
+ 1 +

1

2 +
√

1
+

1

4 +
√

2
+

1

8 +
√

3
+ · · ·+ 1

2n +
√
n

+ · · ·

converges. To see this, we ignore the first three terms and compare the

remaining terms with those of the convergent geometric series
∞∑
n=0

1

2n
.

The term 1/(2n +
√
n) of the truncated sequence is less than the

corresponding term 1/2n of the geometric series. We see that term by
term we have the comparison,

1 +
1

2 +
√

1
+

1

4 +
√

2
+

1

8 +
√

3
+ · · · ≤ 1 +

1

2
+

1

4
+

1

8
+ · · ·

So the truncated series and the original series converge by an application
of the Comparison Test.
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The Limit Comparison Test

We now introduce a comparison test that is particularly useful for series in
which an is a rational function of n.

Theorem 73 (Limit Comparison Test).

Suppose that an > 0 and bn > 0 for all n ≥ N (N an integer)

1. If lim
n→∞

an
bn

= c > 0, then
∑

an and
∑

bn both converge or both

diverge.

2. If lim
n→∞

an
bn

= 0 and
∑

bn converges, then
∑

an converges.

3. If lim
n→∞

an
bn

=∞ and
∑

bn diverges, then
∑

an diverges.
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Proof of Part 1

As
an

bn
→ c, by definition it follows that given any ε > 0, there exists a positive integer N1 such

that

∣∣∣∣ anbn − c

∣∣∣∣ < ε, ∀ n > N1.

In particular, for ε = c/2, there exists a +ve integer m such that∣∣∣∣ anbn − c

∣∣∣∣ < c

2
, ∀ n > N1

⇒ −
c

2
<

an

bn
− c <

c

2
, ∀ n > N1

⇒ c −
c

2
<

an

bn
< c +

c

2
, ∀ n > N1

⇒
c

2
<

an

bn
<

3c

2
, ∀ n > N1

⇒
( c

2

)
bn < an <

(
3c

2

)
bn, ∀ n > N1.

Thus, by using direct comparison test,( c
2

)
bn < an ⇒ if

∑
bn diverges, then

∑
an diverges and

an <

(
3c

2

)
bn ⇒ if

∑
bn converges, then

∑
an converges.

Hence, the result follows.
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Proof of Part 2

As
an
bn
→ 0, for ε = 1, there exists a positive integer N2 such that∣∣∣∣anbn − 0

∣∣∣∣ < 1, ∀ n > N2

⇒ −1 <
an
bn

< 1, ∀ n > N2

⇒ −bn < an < bn, ∀ n > N2

Thus, by using direct comparison test, an < bn ⇒ if
∑

bn converges, then∑
an converges.
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Proof of Part 3

As
an
bn
→∞, by definition, for every real number M, there exists a positive

integer N3 such that
an
bn

> M, ∀ n > N3.

In particular, for M = 1, there exists a positive integer N4 such that

an
bn

> 1, ∀ n > N4

⇒ an > bn, ∀ n > N4.

Thus, by using direct comparison test, if
∑

bn diverges, then
∑

an also
diverges.
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Using the Limit Comparison Test

Example 74.

Which of the following series converge, and which diverge?

(a) 3
4 + 5

9 + 7
16 + 9

25 + · · · =
∞∑
n=1

2n + 1

(n + 1)2
=
∞∑
n=1

2n + 1

n2 + 2n + 1

(b) 1
1 + 1

3 + 1
7 + 1

15 + · · · =
∞∑
n=1

1

2n − 1

(c) 1+2 ln 2
9 + 1+3 ln 3

14 + 1+4 ln 4
21 + · · · =

∞∑
n=1

1 + n ln n

n2 + 5
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Solution

(a) Let an = (2n + 1)/(n2 + 2n + 1).

For large n, we expect an to behave like

2n/n2 = 2/n

since the leading terms dominate for large n, so we let bn = 1/n. Since

∞∑
n=1

bn =
∞∑
n=1

1

n
diverges

and

lim
n→∞

an
bn

= lim
n→∞

2n2 + n

n2 + 2n + 1
= 2,∑

an diverges by Part 1 of the Limit Comparison Test. We could just as

well have taken bn = 2/n, but 1/n is simpler.
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Solution (contd...)

(b) Let an = 1/(2n − 1). For large n, we expect an to behave like 1/2n so
we let bn = 1/2n.

Since
∞∑
n=1

bn =
∞∑
n=1

1

2n
converges

and

lim
n→∞

an
bn

= lim
n→∞

2n

2n − 1

= lim
n→∞

1

1− (1/2n)

= 1.∑
an converges by Part 1 of the Limit Comparison Test.
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Solution (contd...)

(c) Let an = (1 + n ln n)/(n2 + 5). For large n, we expect an to behave like

(n ln n)/n2 = (ln n)/n,

which is greater than 1/n for n ≥ 3, so we take bn = 1/n.

Since
∞∑
n=2

bn =
∞∑
n=2

1

n
diverges

and

lim
n→∞

an
bn

= lim
n→∞

n + n2 ln n

n2 + 5
=∞,

∑
an diverges by Part 3 of the Limit Comparison Test.
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Example

Example 75.

Does
∞∑
n=1

ln n

n3/2
converge?

Because ln n grows more slowly than nc for any positive constant c, we
would expect to have

ln n

n3/2
<

n1/4

n3/2
=

1

n5/4

for n sufficiently large. Indeed, taking an = (ln n)/n3/2 and bn = 1/n5/4,
we have

lim
n→∞

an
bn

= lim
n→∞

ln n

n1/4
= lim

n→∞

1/n

(1/4)n−3/4
= lim

n→∞

4

n1/4
= 0.

Since
∑

bn =
∑

(1/n5/4) (a p-series with p > 1) converges,
∑

an
converges by Part 2 of the Limit Comparison Test.
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Exercise

Exercise 76 (Direct Comparison Test).

Use the comparison test to determine if each series converges or diverges.

1.
∞∑
n=1

n − 1

n4 + 2

2.
∞∑
n=2

1√
n − 1

3.
∞∑
n=1

cos2 n

n3/2

4.
∞∑
n=1

1

n3n

5.
∞∑
n=1

√
n + 1√
n2 + 3
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Solution

1. converges

2. diverges

3. converges

4. converges

5. diverges
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Exercise

Exercise 77 (Limit Comparison Test).

Use the limit comparison test to determine if each series converges or
diverges.

1.
∞∑
n=1

√
n + 1

n2 + 2

2.
∞∑
n=2

n(n + 1)

(n2 + 1)(n − 1)

3.
∞∑
n=1

2n

3 + 4n

4.
∞∑
n=2

1

ln n

5.
∞∑
n=1

ln
(

1 +
1

n2

)
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Solution

1. diverges

2. diverges

3. converges

4. diverges

5. converges
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Exercise

Exercise 78 (Determining Convergence or Divergence).

Which of the series converge, and which diverge? Give reasons for your
answers.

1.
∞∑
n=1

1

2
√
n + 3
√
n

2.
∞∑
n=1

sin2n

2n

3.
∞∑
n=1

n + 1

n2
√
n

4.
∞∑
n=1

(
n

3n + 1

)n

5.
∞∑
n=3

1

ln(ln n)

6.
∞∑
n=2

1√
n ln n

7.
∞∑
n=2

ln(n + 1)

n + 1

8.
∞∑
n=1

2n − n

n2n

9.
∞∑
n=1

tan
1

n
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Solution

1. diverges when compared with
∑∞

n=1
1√
n

2. converges when compared with
∑∞

n=1
1
2n

3. converges when compared with
∑∞

n=1
1

n3/2

4. converges when compared with
∑∞

n=1
1
3n

5. diverges when compared with
∑∞

n=1
1
n

6. diverges when compared with
∑∞

n=1
1
n

7. diverges when compared with
∑∞

n=1
1
n

8. diverges when compared with
∑∞

n=1
1
n

9. diverges
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Exercise

Exercise 79 (Determining Convergence or Divergence).

Which of the series converge, and which diverge? Give reasons for your
answers.

1.
∞∑
n=1

sec−1n

n1.3

2.
∞∑
n=1

coth n

n2

3.
∞∑
n=1

1

1 + 2 + 3 + · · ·+ n

4.
∞∑
n=1

1

1 + 22 + 32 + · · ·+ n2
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Solution

1. converges when compared with
∑∞

n=1
1

n1.3

2. converges when compared with
∑∞

n=1
1
n2

3. converges when compared with
∑∞

n=1
1
n2

4. converges when compared with
∑∞

n=1
1
n3
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Exercise

Exercise 80.

If
∞∑
n=1

an is a convergent series of nonnegative numbers, can anything be

said about
∞∑
n=1

(an/n)? Explain.
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Solution

Yes,
∞∑
n=1

an
n converges by the Direct Comparison Test because an

n < an.
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Exercise

Exercise 81.

Suppose that an > 0 and bn > 0 for n ≥ N (N an integer). If

lim
n→∞

(an/bn) =∞ and
∑

an converges, can anything be said about∑
bn? Give reasons for your answer.
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Solution

lim
n→∞

an
bn

=∞⇒ there exists an integer N such that for all n > N,
an
bn
> 1⇒ an > bn.

If
∑

an converges, then
∑

bn converges by the Direct Comparison Test.
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Exercise

Exercise 82.

Prove that if
∑

an is a convergent series of nonnegative terms, then∑
a2
n converges.
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Solution

∑
an converges ⇒ lim

n→∞
an = 0⇒ there exists an integer N such that for

all n > N, 0 ≤ an < 1⇒ a2
n < an ⇒

∑
a2
n converges by the Direct

Comparison Test.
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Exercise

Exercise 83.

Suppose that an > 0 and
lim
n→∞

n2an = 0.

Prove that
∑

an converges.
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Solution

Since an > 0 and lim
n→∞

(n2 · an) = 0, compare
∑

an with
∑ 1

n2 , which is a

convergent p-series; lim
n→∞

an
1/n2 = lim

n→∞
(n2 · an) = 0.

Hence
∑

an converges by Limit Comparison Test.
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Exercise

Exercise 84.

Show that
∞∑
n=2

(ln n)q

np

converges for −∞ < q <∞ and p > 1.

(Hint: Limit Comparison with
∑∞

n=2
1
nr for 1 < r < p.)
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Solution

Let −∞ < q <∞ and p > 1. If q = 0, then
∞∑
n=2

(ln n)q

np
=
∞∑
n=2

1
np

, which is a convergent p-series.

If q 6= 0, compare with
∞∑
n=2

1
nr

where 1 < r < p, then lim
n→∞

(ln n)q

np

1/nr
= lim

n→∞
(ln n)q

np−r , and p − r > 0.

If q < 0⇒ −q > 0 and lim
n→∞

(ln n)q

np−r = lim
n→∞

1
(ln n)−qnp−r = 0. If q > 0,

lim
n→∞

(ln n)q

np−r = lim
n→∞

q(ln n)q−1( 1
n )

(p−r)np−r−1 = lim
n→∞

q(ln n)q−1

(p−r)np−r . If q − 1 ≤ 0⇒ 1− q ≥ 0 and

lim
n→∞

q(ln n)q−1

(p−r)np−r = lim
n→∞

q
(p−r)np−r (ln n)1−q = 0, otherwise, we apply L’Hopital’s Rule again.

lim
n→∞

q(q−1)(ln n)q−2( 1
n )

(p−r)2np−r−1 = lim
n→∞

q(q−1)(ln n)q−2

(p−r)2np−r . If q − 2 ≤ 0⇒ 2− q ≥ 0 and

lim
n→∞

q(q−1)(ln n)q−2

(p−r)2np−r = lim
n→∞

q(q−1)

(p−r)2np−r (ln n)2−q = 0; otherwise, we apply L’Hopital’s Rule again.

Since q is finite, there is a positive integer k such that q − k ≤ 0⇒ k − q ≥ 0. Thus, after k

applications of L’Hopital’s Rule we obtain

lim
n→∞

q(q−1)···(q−k+1)(ln n)q−k

(p−r)knp−r = lim
n→∞

q(q−1)···(q−k+1)

(p−r)knp−r (ln n)k−q = 0. Since the limit is 0 in every case,

by Limit Comparison Test, the series
∞∑
n=1

(ln n)q

np
converges.

P. Sam Johnson Infinite Series (Part-1) 167/224



Exercise

Exercise 85.

Show that
∞∑
n=2

(ln n)q

np

diverges for −∞ < q <∞ and 0 < p ≤ 1.

(Hint: Limit Comparison with an appropriate p-series)
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Solution

Let −∞ < q <∞ and p ≤ 1. If q = 0, then
∞∑
n=2

(ln n)q

np
=
∞∑
n=2

1
np

, which is a divergent p-series. If q > 0, compare with

∞∑
n=2

1
np

, which is a divergent p-series. Then lim
n→∞

(ln n)q

np
1/np

= lim
n→∞

(ln n)q =∞. If q < 0⇒ −q > 0, compare with
∞∑
n=2

1
nr

,

where 0 < p < r ≤ 1. lim
n→∞

(ln n)q

np
1/nr

= lim
n→∞

(ln n)q

np−r = lim
n→∞

nr−p

(ln n)−q since r − p > 0. Apply L’Hopital’s to obtain

lim
n→∞

(r−p)nr−p−1

(−q)(ln n)−q−1
(

1
n

) = lim
n→∞

(r−p)nr−p

(−q)(ln n)−q−1 . If −q − 1 ≤ 0⇒ q + 1 ≥ 0 and lim
n→∞

(r−p)nr−p (ln n)q+1

(−q)
=∞,

otherwise, we apply L’Hopital’s Rule again to obtain lim
n→∞

(r−p)2nr−p−1

(−q)(−q−1)(ln n)−q−2
(

1
n

) = lim
n→∞

(r−p)2nr−p

(−q)(−q−1)(ln n)−q−2 . If

−q − 2 ≤ 0⇒ q + 2 ≥ 0 and lim
n→∞

(r−p)2nr−p

(−q)(−q−1)(ln n)−q−2 = lim
n→∞

(r−p)2nr−p (ln n)q+2

(−q)(−q−1)
=∞, otherwise, we apply

L’Hopital’s Rule again. Since q is finite, there is a positive integer k such that −q − k ≤ 0⇒ q + k ≥ 0. Thus, after k

applications of L’Hopital’s Rule we obtain

lim
n→∞

(r−p)k nr−p

(−q)(−q−1)···(−q−k+1)(ln n)−q−k = lim
n→∞

(r−p)k nr−p (ln n)q+k

(−q)(−q−1)···(−q−k+1)
=∞. Since the limit is∞ if q > 0 or if

q < 0 and p < 1, by Limit comparison test, the series
∞∑
n=1

(ln n)q

np−r diverges. Finally if q < 0 and p = 1 then

∞∑
n=2

(ln n)q

np
=
∞∑
n=2

(ln n)q

n
. Compare with

∞∑
n=2

1
n

, which is a divergent p-series. For n ≥ 3,

ln n ≥ 1⇒ (ln n)q ≥ 1⇒ (ln n)q

n
≥ 1

n
. Thus

∞∑
n=2

(ln n)q

n
diverges by Comparison Test. Thus, if −∞ < q <∞ and p ≤ 1,

the series
∞∑
n=1

(ln n)q

np−r diverges.
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Exercise

Exercise 86.

Use results of the above two exercises to determine if each series converges
or diverges.

(a)
∞∑
n−2

(ln n)3

n4

(b)
∞∑
n−2

√
ln n

n

(c)
∞∑
n=2

(ln n)1/5

n0.99

(d)
∞∑
n=2

1√
n. ln n
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Solution

1. Converges by Exercise 84 with q = 3 and p = 4.

2. Diverges by Exercise 85 with q = 1
2 and p = 1

2 .

3. Diverges by Exercise 85 with q = 1
5 and p = 0.99.

4. Diverges by Exercise 85 with q = −1
2 and p = 1

2 .
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Theory and Examples

Exercise 87 (Decimal numbers).

Any real number in the interval [0, 1] can be represented by a decimal (not
necessarily unique) as

0 · d1d2d3d4 . . . =
d1

10
+

d2

102
+

d3

103
+

d4

104
+ · · · ,

where di is one of the integers 0, 1, 2, 3, . . . , 9.
Prove that the series on the right-hand side always converges.

P. Sam Johnson Infinite Series (Part-1) 172/224



Theory and Examples

Exercise 88.

1. If
∑

an is a convergent series of positive terms, prove that
∑

sin(an)
converges.

2. Show that
∞∑
n=1

[√
n+1−

√
n

np

]
converges for p > 1

2 and diverges for

0 < p ≤ 1
2 .
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Absolute Convergence
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Absolutely Convergent

When some of the terms of a series are positive and others are negative,
the series may or may not converge. For example, the geometric series

5− 5

4
+

5

16
− 5

64
+ · · · =

∞∑
n=0

5

(
−1

4

)n

(4)

converges (since |r | = 1
4 < 1), whereas the different geometric series

1− 5

4
+

25

16
− 125

64
+ · · · =

∞∑
n=0

(
−5

4

)n

(5)

diverges (since |r | = 5/4 > 1). In series (4), there is some cancelation in
the partial sums, which may be assisting the convergence property of the
series.
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Absolutely Convergent

However, if we make all of the terms positive in series (4) to form the new
series

5 +
5

4
+

5

16
+

5

64
+ · · · =

∞∑
n=0

∣∣∣∣5(−1

4

)n∣∣∣∣ =
∞∑
n=0

5

(
1

4

)n

,

we see that it still converges. For a general series with both positive and
negative terms, we can apply the tests for convergence studied before to
the series of absolute values of its terms.

In doing so, we are led naturally to the following concept.

Definition 89 (Absolutely Convergent).

A series
∑

an converges absolutely (is absolutely convergent) if the
corresponding series of absolute values,

∑
|an|, converges.
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Absolutely Convergent

The geometric series

1− 1

2
+

1

4
− 1

8
+ · · ·

converges absolutely because the corresponding series of absolute values

1 +
1

2
+

1

4
+

1

8
+ · · ·

converges. The series

1− 1

2
+

1

4
− 1

8
+ · · · =

∞∑
n=1

(−1

2

)n
is also convergent. The situation is always true : An absolutely convergent
series is convergent as well, which will be proved now.
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The Absolute Convergence Test

Theorem 90 (The Absolute Convergence Test).

If
∞∑
n=1

|an| converges, then
∞∑
n=1

an converges.
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Proof of The Absolute Convergence Test

For each n, −|an| ≤ an ≤ |an|, so 0 ≤ an + |an| ≤ 2|an|. If
∞∑
n=1

|an|

converges, then
∞∑
n=1

2|an| converges and, by the Direct Comparison Test,

the nonnegative series
∞∑
n=1

(an + |an|)converges. The equality

an = (an + |an|)− |an| now lets us express
∞∑
n=1

an as the difference of two

convergent series :

∞∑
n=1

an =
∞∑
n=1

(an + |an| − |an|) =
∞∑
n=1

(an + |an|)−
∞∑
n=1

|an|.

Therefore,
∞∑
n=1

an converges.
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Applying the Absolute Convergence Test

Example 91.

For
∞∑
n=1

(−1)n+1 1

n2
= 1− 1

4
+

1

9
− 1

16
+ · · ·

the corresponding series of absolute values is convergent series

∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+ · · · .

The original series converges because it converges absolutely.
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Applying the Absolute Convergence Test

Example 92.

For
∞∑
n=1

sin n

n2
=

sin 1

1
+

sin 2

4
+

sin 3

9
+ · · ·

the corresponding series of absolute values is

∞∑
n=1

∣∣∣sin n

n2

∣∣∣ =
∣∣∣sin 1

1

∣∣∣+
∣∣∣sin 2

4

∣∣∣+ · · ·

which converges by comparison with
∞∑
n=1

(1/n2) because | sin n| ≤ 1 for

every n. The original series converges absolutely; therefore it converges.
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Ratio and Root Tests
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Ratio Test

The Ratio Test measures the rate of growth (or decline) of a series by the
ratio

an+1

an
.

For a geometric series
∑

arn, this rate is constant

arn+1

arn
= r ,

and the series converges if and only if its ratio is less than 1 in absolute
value.

The Ratio Test is a powerful rule extending that result.

We shall now discuss convergence of series using the “Ratio and Root
Tests.”
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(D’Alembert’s) Ratio Test

Theorem 93 (Ratio Test).

Let
∑

an be any series and suppose that

lim
n→∞

∣∣∣an+1

an

∣∣∣ = ρ.

Then

(a) The series converges absolutely if ρ < 1.

(b) The series diverges if ρ > 1 or ρ is infinite.

(c) The test is inconclusive if ρ = 1.
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Proof of Ratio Test

(a) Case : ρ < 1

Let r be a number between ρ and 1. Then the number ε = r − ρ is
positive.

Since
∣∣∣an+1

an

∣∣∣→ ρ,
∣∣∣an+1

an

∣∣∣ must lie within ε of ρ, when n is large enough,

say for all n ≥ N. In particular
∣∣∣an+1

an

∣∣∣ < ρ+ ε = r , when n ≥ N. That is,

|aN+1| < r |aN |
|aN+2| < r |aN+1| < r2|aN |
|aN+3| < r |aN+2| < r3|aN |

...

|aN+m| < r |aN+m−1| < rm|aN |.
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Proof of Ratio Test (contd...)

Therefore,

∞∑
m=N

|am| =
∞∑

m=0

|aN+m| ≤
∞∑

m=0

|aN |rm = |aN |
∞∑

m=0

rm.

The geometric series on the right-hand side converges because 0 < r < 1,
so the series of absolute values

∑∞
m=N |am| converges by the Direct

Comparison Test.

Because adding or deleting finitely many terms in a series does not affect
its convergence or divergence property, the series

∑∞
n=1 |an| also converges.

That is, the series
∑

an is absolutely convergent.
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Proof of Ratio Test (contd...)

(b) Case : 1 < ρ ≤ ∞

From some index M on,
∣∣∣aN+1

an

∣∣∣ > 1 and |aM | < |aM+1| < |aM+2| < · · · .

The terms of the series do not approach zero as n becomes infinite, and
the series diverges by the nth Term Test.
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Proof of Ratio Test (contd...)

(c) Case : ρ = 1

The two series
∞∑
n=1

1

n
and

∞∑
n=1

1

n2

show that some other test for convergence must be used when ρ = 1.

For
∞∑
n=1

1

n
:
∣∣∣an+1

an

∣∣∣ =
1/(n + 1)

1/n
=

n

n + 1
→ 1.

∞∑
n=1

1

n2
:
∣∣∣an+1

an

∣∣∣ =
1/(n + 1)2

1/n2
=

(
n

n + 1

)2

→ 12 = 1.

In both cases, ρ = 1, yet the first series diverges, whereas the second
converges.
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Ratio Test

The Ratio Test is often effective when the terms of a series contain
factorials of expressions involving n or expressions raised to a power
involving n.

Example 94 (Applying The Ratio Test).

Investigate the convergence of the following series.

(a)
∞∑
n=0

2n + 5

3n

(b)
∞∑
n=1

(2n)!

n!n!

(c)
∞∑
n=1

4nn!n!

(2n)!
.
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Solution

(a) For the series
∞∑
n=0

(2n + 5)/3n,

∣∣∣an+1

an

∣∣∣ =
(2n+1 + 5)/3n+1

(2n + 5)/3n
=

1

3
.
2n+1 + 5

2n + 5
=

1

3
.

(
2 + 5.2−n

1 + 5.2−n

)
→ 1

3
.
2

1
=

2

3
.

The series converges because ρ = 2/3 is less than 1. This does not mean
that 2/3 is the sum of the series. In fact,

∞∑
n=0

2n + 5

3n
=
∞∑
n=0

(
2

3

)n

+
∞∑
n=0

5

3n
=

1

1− (2/3)
+

5

1− (1/3)
=

21

2
.
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Solution (contd...)

(b) If an = (2n)!
n!n! , then an+1 = (2n+2)!

(n+1)!(n+1)! and

∣∣∣an+1

an

∣∣∣ =
n!n!(2n + 2)(2n + 1)(2n)!

(n + 1)!(n + 1)!(2n)!

=
(2n + 2)(2n + 1)

(n + 1)(n + 1)

=
4n + 2

n + 1
→ 4.

The series diverges because ρ = 4 is greater than 1.

P. Sam Johnson Infinite Series (Part-1) 191/224



Solution (contd...)

(c) If an = 4nn!n!/(2n)!, then∣∣∣an+1

an

∣∣∣ =
4n+1(n + 1)!(n + 1)!

(2n + 2)(2n + 1)(2n)!
.

(2n)!

4nn!n!

=
4(n + 1)(n + 1)

(2n + 2)(2n + 1)
=

2(n + 1)

2n + 1
→ 1.

Because the limit is ρ = 1, we cannot decide from the Ratio Test whether
the series converges. When we notice that an+1/an = (2n + 2)/(2n + 1),
we conclude that an+1 is always greater than an because (2n + 2)/(2n + 1)
is always greater than 1.

Therefore, all terms are greater than or equal to a1 = 2, and the nth term
does not approach zero as n→∞. The series diverges.
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Problems using (D’Alembert’s) Ratio Test

Example 95.

Discuss the convergence of the following series :

1. 1 +
2!

22
+

3!

33
+

4!

44
+ . . . [ Ans: Convergent]

2. 1 +
2p

2!
+

3p

3!
+

4p

4!
+ . . . (p > 0) [ Ans: Convergent]

3.
1

2
+

1

3
+

1

5
+

1

9
+ . . . [ Ans: Convergent]

4. 1 +
x

2
+

x2

5
+

x3

10
+ · · ·+ xn

n2 + 1
+ . . .

[ Ans: Convergent if x ≤ 1 and divergent if x > 1]

5. 1 + 3x + 5x2 + 7x3 + 9x4 + . . .
[ Ans: Convergent if x < 1 and divergent if x ≥ 1]
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The Root Test

The convergence tests we have so far for
∑

an work best when the

formula for an is relatively simple. But consider the following.

Example 96.

Let an =

{
n/2n n odd

1/2n n even.

Does
∑

an converge?
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Solution

To investigate the convergence, we write out several terms of the series :

∞∑
n=1

an =
1

21
+

1

22
+

3

23
+

1

24
+

5

25
+

1

26
+

7

27
+ · · ·

=
1

2
+

1

4
+

3

8
+

1

16
+

5

32
+

1

64
+

7

128
+ · · ·

Clearly, this is not a geometric series.

The nth term approaches zero as n→∞, so we do not know if the series
diverges.

The Integral Test does not look promising.
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Solution (contd...)

The Ratio Test produces

an+1

an
=

{
1

2n n odd
n+1

2 n even

As n→∞, the ratio is alternately small and large and has no limit.

A test that will answer the question (the series converges) is the Root
Test.
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The (Cauchy’s) Root Test

Theorem 97 (The Root Test).

Let
∑

an be any series and suppose that

lim
n→∞

n
√
|an| = ρ.

Then

(a) the series converges absolutely if ρ < 1,

(b) the series diverges if ρ > 1 or ρ is infinite,

(c) the test is inconclusive if ρ = 1.
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Proof of Root Test

(a) Case : ρ < 1

Choose an ε > 0 so small that ρ+ ε < 1. Since n
√
|an| → ρ, the terms n

√
|an| eventually get

closer than ε to ρ.

In other words, there exists an index M ≥ N such that n
√
|an| < ρ+ ε when n ≥ M. Then it is

also true that |an| < (ρ+ ε)n for n ≥ M.

Now,
∞∑

n=M

(ρ+ ε)n, a geometric series with ratio (ρ+ ε) < 1 and theorefore converges. By direct

comparison test,
∞∑

n=M

|an| converges, from which it follows that

∞∑
n=1

|an| = |a1|+ · · ·+ |aM−1|+
∞∑

n=M

|an|

converges. Theorefore
∑

an converges absolutely.
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Proof of Root Test

(b) Case : 1 < ρ ≤ ∞

For all indices beyond some integer M. we have n
√
|an| > 1, so that

|an| > 1 for n > M.

The terms of the series do not converge to zero. The series diverges by the
nth-Term Test.

(c) Case : ρ = 1

The series
∞∑
n=1

(1/n) and
∞∑
n=1

(1/n2) show that the test is not conclusive

when ρ = 1.

The first series diverges and the second converges, but in both cases
n
√
|an| → 1.
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Problems using (Cauchy’s) nth-root Test

Example 98.

Discuss the convergence/divergence of the following series :

1.
∑(

n

n + 1

)n2 (
or
∑(

1 +
1

n

)−n2)
[Ans: Convergent]

2.
∑ 1

(log n)n
[Ans: Convergent]

3.
∑ xn

nn
[Ans: Convergent for all x]

4.
∑

e
√

nrn (r > 0) [Ans: Conv. if 0 < r < 1 & Div. if r ≥ 1]

5.
∑

(n1/n − 1)n [Ans: Convergent]

6.
∑

nkxn [Ans: Convergent if x < 1 or x = 1 and k < −1 and Divergent if x > 1

or x = 1 and k ≥ −1]

7.
13

3
+

23

32
+ 1 +

43

34
+ · · · [Try this problem using Ratio test also.]

[Ans: Convergent]
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Example 99 (Applying the Root Test).

Which of the following series converges, and which diverges?

(a)
∞∑
n=1

n2

2n

(b)
∞∑
n=1

2n

n2

(c)
∞∑
n=1

(
1

1 + n

)n
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Solution

(a)
∞∑
n=1

n2

2n
converges because n

√
n2

2n =
n√
n2

n√2n
= ( n√n)2

2 → 1
2 < 1

(b)
∞∑
n=1

2n

n2
diverges because n

√
n2

2n = 2
( n√n)2 → 2

1 > 1.

(c)
∞∑
n=1

(
1

1 + n

)n

converges because n

√(
1

1+n

)n
= 1

1+n → 0 < 1.
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Example

Example 100.

Let an =

{
n/2n n odd

1/2n n even.
Does

∑
an converge?

Solution

We apply the Root Test, finding that

n
√
|an| =

{
n
√

n/2, n odd

1/2, n even.
(6)

Therefore, 1
2 ≤

n
√
|an| ≤

n√n
2 . Since n

√
n→ 1, we have

limn→∞
n
√
|an| = 1/2 by the Sandwich Theorem.

The limit is less than 1, so the series converges by the Root Test.
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Exercise

Exercise 101 (Determining Convergence or Divergence).

Which of the series converge, and which diverge? Give reasons for your
answers. (When checking your answers, remember there may be more
than one way to determine a series’ convergence or divergence.)

1.
∞∑
n=1

(−1)nn2e−n

2.
∞∑
n=1

n!(−e)−n

3.
∞∑
n=1

(
n − 2

n

)n

4.
∞∑
n=1

sinn

(
1√
n

)

5.
∞∑
n=1

(−1)n
(

1− 1

3n

)n

6.
∞∑
n=1

(− ln n)n

nn
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Solution

1. converges by the Ratio Test:

lim
n→∞

an+1
an

= lim
n→∞

(
(n+1)2

en+1

)
(

n2
en

) = lim
n→∞

(n+1)2

en+1 ·
en

n2 = lim
n→∞

(
1 + 1

n

)2 ( 1
e

)
= 1

e
< 1.

2. diverges by the Ratio Test: lim
n→∞

an+1
an

= lim
n→∞

(
(n+1)!

en+1

)
(

n!
en

) = lim
n→∞

(n+1)!

en+1 ·
en

n!
= lim

n→∞
n+1
e

=∞.

3. diverges; lim
n→∞

an = lim
n→∞

(
n−2
n

)n
= lim

n→∞

(
1 + −2

n

)n
= e−2 6= 0

4.
[

sin
(

1√
n

)]n
≥ 0 for all n ≥ 1; lim

n→∞
n

√[
sin
(

1√
n

)]n
= lim

n→∞
sin
(

1√
n

)
= sin(0) = 0 < 1⇒

∞∑
n=1

[
sin
(

1√
n

)]n
converges.

5. diverges; lim
n→∞

an = lim
n→∞

(
1− 1

3n

)n
= lim

n→∞

(
1 +

(
− 1

3

)
n

)n

= e−1/3 ≈ 0.72 6= 0

6. converges by the nth-Root Test:

lim
n→∞

n√an = lim
n→∞

n
√

(ln n)n

nn
= lim

n→∞
((ln n)n)1/n

(nn)1/n
= lim

n→∞
ln n
n

= lim
n→∞

(
1
n

)
1

= 0 < 1
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Exercise

Exercise 102 (Determining Convergence or Divergence).

Which of the series converge, and which diverge? Give reasons for your
answers. (When checking your answers, remember there may be more
than one way to determine a series’ convergence or divergence.)

1.
∞∑
n=1

(n + 1)(n + 2)

n!

2.
∞∑
n=1

n2n(n + 1)!

3nn!

3.
∞∑
n=1

n!

(2n + 1)!

4.
∞∑
n=2

n

(ln n)(n/2)

5.
∞∑
n=1

n! ln n

n(n + 2)!
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Solution

1. converges by the Ratio Test:
lim
n→∞

an+1

an
= lim

n→∞
(n+2)(n+3)

(n+1)! · n!
(n+1)(n+2) = 0 < 1

2. converges by the Ratio Test: lim
n→∞

an+1

an
=

lim
n→∞

(n+1)2n+1(n+2)!
3n+1(n+1)!

· 3nn!
n2n(n+1)! = lim

n→∞

(
n+1
n

) (
2
3

) (
n+2
n+1

)
= 2

3 < 1

3. converges by the Ratio Test:
lim
n→∞

an+1

an
= lim

n→∞
(n+1)!

(2n+3)! ·
(2n+1)!

n! = lim
n→∞

n+1
(2n+3)(2n+2) = 0 < 1

4. converges by the Root Test:

lim
n→∞

n
√
an = lim

n→∞
n

√
n

(ln n)n/2 = lim
n→∞

n√n√
ln n

=
lim

n→∞
n√n

lim
n→∞

√
ln n

= 0 < 1(
lim
n→∞

n
√
n = 1

)
5. converges by the Direct Comparison Test:

n! ln n
n(n+2)! = ln n

n(n+1)(n+2) <
n

n(n+1)(n+2) = 1
(n+1)(n+2) <

1
n2 which is the

nth-term of a convergent p-series.
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Exercise

Exercise 103 (Recursively Defined Terms).

Which of the series
∞∑
n=1

an defined by the formulas converge, and which

diverge? Give reasons for your answers.

1. a1 = 2, an+1 = 1+sin n
n an

2. a1 = 1, an+1 = 1+tan−1 n
n an

3. a1 = 3, an+1 = n
n+1an

4. a1 = 5, an+1 =
n√n
2 an

5. a1 = 1
2 , an+1 = n+ln n

n+10 an

6. a1 = 1
2 , an+1 = (an)n+1

7. an = 2nn!n!
(2n)!
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Solution

1. converges by the Ratio Test: lim
n→∞

an+1
an

= lim
n→∞

(
1+sin n

n

)
an

an
= 0 < 1

2. converges by the Ratio Test: lim
n→∞

an+1
an

= lim
n→∞

(
1+tan−1 n

n

)
an

an
= lim

n→∞
1+tan−1n

n
= 0 since the numerator

approaches 1 + π
2

while the denominator tends to∞.

3. diverges; an+1 = n
n+1

an ⇒ an+1 =
(

n
n+1

) (
n−1
n

an−1

)
⇒ an+1 =

(
n

n+1

) (
n−1
n

) (
n−2
n−1

an−2

)
⇒ an+1 =(

n
n+1

) (
n−1
n

) (
n−2
n−1

)
· · ·
(

1
2

)
a1 ⇒ an+1 =

a1
n+1
⇒ an+1 = 3

n+1
, which is a constant times the general term of

the diverging harmonic series.

4. converges by the Ratio Test: lim
n→∞

an+1
an

= lim
n→∞

n√n
2

= 1
2
< 1.

5. n+ln n
n+10

> 0 and a1 = 1
2
⇒ an > 0; ln n > 10 for

n > e10 ⇒ n + ln n > n + 10⇒ n+ln n
n+10

> 1⇒ an+1 = n+ln n
n+10

an > an ; thus an+1 > an ≥ 1
2
⇒ lim

n→∞
an 6= 0, so

the series diverges by the nth-Term Test.

6. converges by the Direct Comparison Test: a1 = 1
2

,

a2 =
(

1
2

)2
, a3 =

((
1
2

)2
)3

=
(

1
2

)6
, a4 =

((
1
2

)6
)4

=
(

1
2

)24
, · · · ⇒ an =

(
1
2

)n!
<
(

1
2

)n
which is the

nth-term of a convergent geometric series.

7. converges by the Ratio Test:

lim
n→∞

an+1
an

= lim
n→∞

2n+1(n+1)!(n+1)!
(2n+2)!

· (2n)!
2nn!n!

= lim
n→∞

2(n+1)(n+1)
(2n+2)(2n+1)

= lim
n→∞

n+1
2n+1

= 1
2
< 1.
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Exercise

Exercise 104 (Determining Convergence or Divergence).

Which of the series converge, and which diverge? Give reasons for your
answers.

1.
∞∑
n=1

(n!)n

(nn)2

2. lim
n→∞

nn

(2n)2

3.
∞∑
n=1

1 · 3 · · · · · (2n − 1)

4n2nn!

4.
∞∑
n=1

1 · 3 · · · · · (2n − 1)

[2 · 4 · · · · · (2n)](3n + 1)
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Solution

1. diverges by the Root Test:

lim
n→∞

n
√
an ≡ lim

n→∞
n

√
(n!)n

(nn)2 = lim
n→∞

n!
n2 =∞ > 1.

2. diverges by the Root Test:

lim
n→∞

n
√
an = lim

n→∞
n

√
nn

(2n)2 = lim
n→∞

n
4 =∞ > 1.

3. converges by the Ratio Test: lim
n→∞

an+1

an
=

lim
n→∞

1·3·····(2n−1)(2n+1)
4n+12n+1(n+1)!

· 4n2nn!
1·3·····(2n−1) = lim

n→∞
2n+1

(4·2)(n+1) = 1
4 < 1.

4. converges by the Ratio Test:
an = 1·3···(2n−1)

(2·4···2n)(3n+1) = 1·2·3·4···(2n−1)(2n)
(2·4···2n)2(3n+1)

= (2n)!
(2nn!)2(3n+1)

⇒

lim
n→∞

(2n+2)!
[2n+1(n+1)!]2(3n+1+1)

· (2nn!)2(3n+1)
(2n)! = lim

n→∞
(2n+1)(2n+2)(3n+1)

22(n+1)2(3n+1+1)

= lim
n→∞

(
4n2+6n+2
4n2+8n+4

)
(1+3−n)
(3+3−n) = 1 · 1

3 = 1
3 < 1.
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Exercise

Exercise 105.

Neither the Ratio nor the Root Test helps with p-series. Try them on

∞∑
n=1

1

np

and show that both tests fail to provide information about convergence.
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Solution

Ratio Test : lim
n→∞

an+1

an
= lim

n→∞
1

(n+1)p ·
np

1 = lim
n→∞

(
n

n+1

)p
= 1p = 1⇒ no

conclusion.

Root Test : lim
n→∞

n
√
an = lim

n→∞
n

√
1
np = lim

n→∞
1

( n√n)
p = 1

(1)p = 1⇒ no

conclusion.
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Exercise

Exercise 106.

Show that neither the Ratio Test nor the Root Test provides information
about the convergence of

∞∑
n=2

1

(ln n)p

where p is a constant.
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Solution

Ratio Test : lim
n→∞

an+1

an
= lim

n→∞
1

(ln(n+1))p ·
(ln n)p

1 =
[

lim
n→∞

ln n
ln(n+1)

]p
=[

lim
n→∞

( 1
n )

( 1
n+1 )

]p
=
(

lim
n→∞

n+1
n

)p
= (1)p = 1⇒ no conclusion.

Root Test : lim
n→∞

n
√
an = lim

n→∞
n

√
1

(ln n)p = 1(
lim

n→∞
(ln n)1/n

)p ; let

f (n) = (ln n)1/n, then ln f (n) = ln(ln n)
n ⇒ lim

n→∞
ln f (n) = lim

n→∞
ln(ln n)

n =

lim
n→∞

( 1
n ln n )

1 = lim
n→∞

1
n ln n = 0⇒ lim

n→∞
(ln n)1/n = lim

n→∞
e ln f (n) = e0 = 1;

therefore lim
n→∞

n
√
an = 1(

lim
n→∞

(ln n)1/n
)p = 1

(1)p = 1⇒ no conclusion.
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Observation

Cauchy’s nth-root test is more general than D’Alembert’s ratio test.

The reason is,

1. lim
n→∞

an+1

an
exists ⇒ lim

n→∞
(an)1/n exists (and both the limits are

equal, in such a case).

2. lim
n→∞

(an)1/n exists ; lim
n→∞

an+1

an
exists.

Therefore, whenever Ratio Test is applicable, Root Test is also applicable,
but not conversely.

In other words, Ratio test may fail but root test may work.

P. Sam Johnson Infinite Series (Part-1) 216/224



Observation

Example 107.
Discuss the convergence/divergence of the following series.

an =

{
2−n; if n is odd

2−n+2; if n is even

Proof:

If n is even, then

lim
n→∞

(an)1/n = lim
n→∞

(2−n)1/n =
1

2
.

If n is odd, then

lim
n→∞

(an)1/n = lim
n→∞

(2−n+2)1/n = lim
n→∞

2−1+2/n =
1

2
.

Thus, in both the cases, lim
n→∞

(an)1/n =
1

2
< 1, ∀ n. Hence, by Cauchy’s Root Test, the given

series is convergent.

In the above problem, note that Ratio Test fails, but Root Test holds good.
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Exercise

Exercise 108.

Let an =

{
n/2n, if n is a prime number

1/2n, otherwise.

Does
∑

an converge? Give reasons for your answer.
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Solution

an ≤ n
2n for every n and the series

∞∑
n=1

n
2n converges by the Ratio Test since

lim
n→∞

(n+1)
2n+1 · 2n

n = 1
2 < 1

⇒
∞∑
n=1

an converges by the Direct Comparison Test.
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Exercises

Exercise 109.

Show that
∞∑
n=1

2(n2)

n!

diverges. Recall from the Laws of Exponents that 2(n2) = (2n)n.
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Solution

2n
2

n! > 0 for all n ≥ 1;

lim
n→∞

(
2(n+1)2

(n+1)!

2n
2

n!

)
= lim

n→∞

(
2n

2+2n+1

(n+1)·n! ·
n!

2n2

)
= lim

n→∞

(
22n+1

n+1

)
= lim

n→∞

(
2·4n
n+1

)
=

lim
n→∞

(
2·4n ln 4

1

)
=∞ > 1

⇒
∞∑
n=1

2n
2

n! diverges.
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Exercises

Exercise 110.

Assume that {bn} is a sequence of positive numbers converging to 4/5.
Determine if the following series converge or diverge.

1.
∞∑
n=1

(bn)1/n

2.
∞∑
n=1

(
5
4

)n
(bn)

3.
∞∑
n=1

(bn)n

4.
∞∑
n=1

1000n

n!+bn
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Exercises

Exercise 111.

Assume that {bn} is a sequence of positive numbers converging to 1/3.
Determine if the following series converge or diverge.

1.
∞∑
n=1

bn+1bn
n4n

2.
∞∑
n=1

nn

n!b2
1b

2
2 ···b2

n
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